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Resumo. Equações Diferencias Ordinárias - EDO constitui tópico compulsório no locus acadêmico.
Determinados conceitos possuem bases de natureza complexa, entretanto, assume-se que, a visualiza-
ção proporciona elementos tácitos e intuitivos que podem atuar, positivamente, no entendimento destes.
Neste artigo, trazem-se alguns exemplos de tópicos estudados no contexto das EDO’s. De modo par-
ticular, discutiremos alguns exemplos abordados em Figueiredo e Neves (2002), relativos às noções de
famílias de curvas planas que representam as soluções de uma EDO. Por fim, mostraremos que o software
viabiliza a visualização de conceitos relativamente complexos.
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Abstract. Ordinary Differential Equations - EDO is compulsory topic in academic locus. Certain con-
cepts have a base of a complex nature, however, it is assumed that the visualization provides intuitive and
tacit elements which can act positively on the understanding of these. In this article, its bring up a few
examples of topics studied in the context of EDO’s. In particular, it discuss some examples covered in
Figueiredo e Neves (2002), linked of the notions of the solutions of one EDO’s families of plane curves.
Finally, it show that the enables the viewing of relatively complex concepts.
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1 Introdução

No estudo de equações diferenciais ordinárias - EDO’s,
deparamos teoremas de natureza reconhecidamente
complexa, como também, conceitos vinculados a defi-
nições, de difícil significação imediata. Nesse contexto,
restringir-nos-emos ao tópico de família de curvas pla-
nas (suas propriedades) e sua envoltória, que permite a
extração de profícuas significações apoiadas na visuali-
zação e percepção de propriedades gráfico-geométricas.
De modo intuitivo, ao tomar-se uma família de curvas
dependentes de um parâmetro λ ∈ R , chamar-se-á de
envoltória como a curva que é tangente a todas as li-
nhas que constituem a família de curvas a um parâmetro
f(x, y, λ) = 0 .

Não obstante, uma dada família poderá possuir uma
envoltória ou mais de uma e, até mesmo, não admi-
tir alguma envoltória. Montalban (2005, p. 5) for-
nece interessante representação que proporciona o en-
tendimento da manifestação de um fenômeno físico, e
que propiciou profunda discussão matemática no pas-
sado (KLINE, 1972; STILLWELL, 1997). Na Figura
1, esse autor indica ainda a manifestação de uma cáus-

tica, termo que, oriundo do grego, quer dizer “queima”.
Montalban (2005, p. 5) observa que “todos os raios re-
fletidos são sempre tangentes à cáustica.”

Figura 1: Montalban (2005) explica a noção de cáustica, emitida
pela concentração de raios luminosos ao longo da envoltória de raios
refletidos.
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Na Figura 1 sublinhamos um exemplo relacionado
com um conceito estudado no contexto de EDO. A visu-
alização constitui componente fundamental nesse caso.
Doravante, apoiar-nos-emos na tecnologia e, de modo
particular, no software Geogebra, com a intenção pre-
cípua de explorar a visualização e o entendimento do
comportamento gráfico-geométrico de construções ela-
boradas com o arrimo deste. Assim, imprimimos o
apelo intuitivo e a possibilidade de um conhecimento
tácito, relativo às situações particulares discutidas em
Figueiredo e Neves (2002). Iniciamos, pois, a próxima
seção, falando sobre EDO’s exatas.

2 Estudo de equações diferenciais ordinárias
e a noção de família de curvas

No estudo de equações diferenciais ordinárias, depara-
mos equações do tipo N(x, y)y′ + M(x, y) = 0 (*) e,
sob determinadas condições, envolvendo a classe de di-
ferenciabilidade de suas funções componentes (M,N),
será exata, ou ainda, pode ser tornada exata, por inter-
médio de um fator integrante µ(x, y). Em boas condi-
ções, suas soluções são obtidas na forma implícita por
uma equação V (x, y) = c (cte). Tal equação pode ser
interpretada como uma curva de nível no plano e, as
soluções da EDO que indicamos em (*), passam por
curvas de nível desta natureza.

A ideia da noção de curva de nível ou superfície
de nível pode ser relacionada com outra noção. Com
efeito, chamar-se-á de família de curvas a um parâ-
metro à seguinte equação (**) f(x, y, λ) = 0, onde
f : Ω× Λ→ R é uma função diferenciável, Ω ⊂ R2 é
um conjunto aberto e Λ ⊂ R é um intervalo da reta.

Cabe observar que a equação f(x, y, z) = 0 pode
ser descrita como uma superfície de nível zero da sub-
mersão f , quando o parâmetro λ é tomado, simples-
mente, como coordenada z.

Tal modelo matemático possibilita questionamentos
de ordem matemática, mas, também, de ordem episte-
mológica. Com efeito, colocamos as seguintes ques-
tões:

(i) dada uma família de curvas do tipo f(x, y, λ) =
0 a um parâmetro, existe uma EDO para a qual essa
família representa solução?

(ii) dada uma EDO, podemos indicar uma família de
curvas do tipo anterior, que constitui sua solução?

Buscaremos exemplificar cada um dos sentidos
acima, descritos em cada alínea, por meio de exemplos
particulares. Vamos considerar, então, de modo preli-
minar, a família de parábolas f(x, y, λ) ≡ y − 2λx2 −
λ = 0, com x, y, λ ∈ R. De imediato, verificamos que
fx(x, y, λ) ≡ y′ − 4λx− 0 = 0↔ y′ − 4λx = 0. Não
obstante, notamos que y = (2λx2 + λ ↔ λ = y

2x2+1 .

Por fim, escrevemos a seguinte EDO (2x2 + 1)y′ −
4xy = 01, da forma (*). Neste caso, dada uma família
de curvas, obtivemos um EDO, cujo campo direções é
descrito por y′ = f(x, y) = 4xy/(2x2 + 1). Tal exem-
plo preenche o sentido indicado na primeira alínea.
Com efeito, a família f(x, y, λ) ≡ y − 2λx2 − λ = 0
constitui um conjunto de soluções regulares (ver Figura
2).

Figura 2: Família de parábolas a um parâmetro com recurso ao soft-
ware Geogebra.

Vamos ressaltar, agora, que o procedimento ante-
rior não garante o conhecimento de todas as soluções de
uma EDO. Neste sentido, podemos considerar a família
f(x, y, λ) = (x − λ)2 + y2 − 1 = 0, oriunda da famí-
lia de círculos de raio 1, dada por x(t) = λ + cos(t)
e y(t) = sen(t), com 0 ≤ t ≤ 2π. Daí, deriva-
mos a expressão f(x, y, λ) = (x − λ)2 + y2 − 1 =
0 ∴ fx(x, y, λ) = 2(x − λ) + 2yy′ = 0. Ademais,
escrevemos, pois, que: (x − λ)2 + y2 − 1 = 0 ↔
(x − λ)2 = 1 − y2. Por fim, eliminamos o parâ-
metro λ estabelecendo que 4y2y′2 = 4(x − λ)2 =
4(1 − y2) → (1 − y2) = y2y′2. Finalmente, tere-
mos que y2(1 + y′2) = 1 ∴ y′ = ±

√
1/y2 − 1.

Figueiredo e Neves (2002, p. 85) indicam ainda as
soluções singulares da EDO anterior, que não foram
incorporadas na resolução anterior. Assim, a família
f(x, y, λ) = (x − λ)2 + y2 − 1 = 0 constitui as solu-
ções regulares de equação y2(1 + y′2) = 1, enquanto
que y(x) = 1 e y(x) = −1 também satisfazem e são
soluções singulares. Elas são visualizadas na Figura 3.

Na Figura 2 indicamos as soluções regulares e solu-
ções singulares da EDO.

Outra noção discutida por Figueiredo e Neves
(2002, p. 85) refere-se à envoltória de uma famí-

1Sendo N(x, y) = (2x2 + 1)y′ e M(x, y) = −4xy.
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Figura 3: Família de círculos a um parâmetro com recurso ao soft-
ware Geogebra.

lia de curvas Cλ. Neste sentido, consideremos uma
família de curvas dada pela expressão (**). Ad-
mitiremos que, para cada a curva λ correspondente
tem tangente, fato que implica que o vetor normal
(fx(x, y, λ), fy(x, y, λ)) 6= 0, para todos os pon-
tos em que (x, y, λ) e f(x, y, λ) = 0. Tais con-
dições definem a envoltória da família que indica-
mos em (**), como sendo uma curva, em coorde-
nadas paramétricas (x(λ), y(λ)), de modo que se te-
nham as duas condições: f(x(λ), y(λ), λ) = 0; e
x′(λ).fx(x(λ), y(λ), λ) + y′(λ).fy(x(λ), y(λ), λ) =
0(∗∗∗).

De modo sistemático, apenas enunciaremos os se-
guintes teoremas:

Teorema 1: A envoltória da família f(x, y, λ) = 0,
onde x = x(λ) e y = y(λ) é a solução do sistema

descrito por
{
f(x(λ), y(λ), λ) = 0
∂f
∂λ (x(λ), y(λ), λ) = 0

.

Dem. Ver demonstração em Vilches (2009, p. 21 -
22).

Teorema 2: A condição suficiente para a existên-
cia de uma envoltória nos pontos regulares de uma fa-
mília de curvas planas é que f ∈ C2, ∂

2f
∂λ2 6= 0 e que

det

[
∂f
∂x

∂f
∂y

∂2

∂x∂λ
∂2

∂y∂λ

]
6= 0. Dem. Ver demonstração em

Vilches (2009, p. 21 - 22).
Os dois teoremas supracitados permitem o entendi-

mento dos próximos exemplos, Para tanto, vamos re-
petir a condição indicada no teorema 1 e tomar a fa-

mília
{
f(x, y, λ) = (x− 2λ)2 + y2 − λ2 = 0
fλ(x, y, λ) = −4(x− 2λ)− 2λ = 0

. Nota-

mos ainda que fx(x, y, λ) = 2(x − 2λ) + 2yy′ =
0 ∴ yy′ − (2λ − x) = 0. E fazendo as contas

a partir da equação (x − 2λ)2 + y2 − λ2 = 0 ∴
x2 − 4xλ + 4λ2 + y2 − λ2 = 0, indicamos ainda que
3λ2 − 4xλ + (x2 + y2) = 0. Nesse caso, indicare-

mos suas soluções por λ1 =
(2+
√
x2−3y2)
3 ou λ2 =

(2−
√
x2−3y2)
3 e, por fim, teremos o campo de direções

y′ = (2λ−x)
y → y′ = f(x, y) =

(
4+2
√
x2−3y2−3x
3y

)
,

definido apenas na região do plano x2 − 3y2 ≥ 0 (ver
Figura 4).

Para determinar sua envoltória, entretanto, da famí-
lia descrita no parâmetro f(x, y, λ) = (x−2λ)2 +y2−
λ2 = 0, realizamos ainda o seguinte procedimento:
fλ(x, y, λ) = −2(x − 2λ) − λ = 0. Daí se tem que
−2(x− 2λ)− λ = 0 ∴ −2x+ 4λ− λ = 0↔ λ = 2x

3 .
Eliminando no sistema anterior, tal parâmetro, obtere-
mos, por fim: yy′ =

(
4x
3 − x

)
= x

3 ∴ ydy = xdx
3 .

Encontramos, pois, a seguinte equação y2

2 = x2

6 + K
ou ainda 3y2 = x2 + K ′. Na Figura 4, fazendo
K ′ = 0, exibimos duas envoltórias particulares, que na
Figura 4, indicamos por y = ± x√

3
. A família de todas

as envoltórias da função está definida por V (x, y) =
y2

2 −
x2

6 −K = 0.

Figura 4: Visualização da envoltória de uma família de circunferên-
cias e seu campo de definição.

Figueiredo e Neves (2002, p. 87) apontam ainda a
seguinte condição fxfλy−fyfλx 6= 0 (que corresponde
ao determinante indicado no teorema 2) como sendo su-
ficiente e necessária a existência de uma envoltória da
família que designamos por f(x, y, λ) = 0. Neste sen-

tido, os autores tomam o sistema:
{
f(x, y, λ) = 0
fλ(x, y, λ) = 0

.

Ora “a condição fxfλy − fyfλx 6= 0 nos garante, pelo
Teorema das Funções Implícitas que existe uma solu-
ção (x(λ), y(λ)) desse sistema”. Isto quer dizer que
se tem f(x(λ), y(λ), λ) = 0. Em seguida, derivamos
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em relação ao parâmetro λ: x′(λ).fx(x(λ), y(λ), λ) +
y′(λ).fy(x(λ), y(λ), λ) + 1.fλ(x(λ), y(λ), λ) = 0.
Todavia, tendo em vista fλ(x, y, λ) = 0 ∴
x′(λ).fx(x(λ), y(λ), λ)+y′(λ).fy(x(λ), y(λ), λ) = 0,
que preenche a condição (***).

Vilches (2009, p. 23) comprova a propriedade, re-
lativa à que, famílias de curva planas diferentes po-
dem possuir a mesma envoltória. De fato, o au-
tor considera a família f(x, y, λ) = x.sen(λ) +
y.cos(λ) − d.cos(λ).sen(λ), com a seguinte condi-
ção sen(λ).cos(λ) 6= 0. Daí, determinamos a so-
lução do seguinte sistema: f(x, y, λ) = x.sen(λ) +
y.cos(λ)−d.cos(λ).sen(λ) = 0 e ∂f

∂λ (x(λ), y(λ), λ) =
x.sen(λ)−y.cos(λ)−d.cos(2λ) = 0. Em seguida, ori-
enta multiplicar a primeira por sen(λ) e a segunda por
cos(λ). Dando prosseguimento, somando-se ambas as
equações nesse sistema, obtemos que: x = d.cos3(λ)
e x = d.sen3(λ). Buscaremos, pois, determinar a en-
voltória da família f(x, y, λ) = x.sen(λ)+y.cos(λ)−
d.cos(λ).sen(λ), no parâmetro λ ∈ R.

Ora, com base nas expressões x = d.cos3(λ) e
x = d.sen3(λ), escrevemos: f(x, y, λ) = x.sen(λ) +
y.cos(λ) − d.cos(λ).sen(λ) = 0 ∴ x

cos(λ) + y
sen(λ) −

d = 0↔ x(
x1/3

d1/3

) + y(
y1/3

d1/3

) − d = 0↔ x2/3 + y2/3 =

d2/3.
Por fim, determinamos a equação x2/3 + y2/3 =

d2/3 que constitui a envoltória da família a um pa-
râmetro que indicamos por f(x, y, λ) = x.sen(λ) +
y.cos(λ) − d.cos(λ).sen(λ). O autor não aponta, to-
davia, a EDO correspondente a tal família. Não obs-
tante, derivamos a equação fx(x, y, λ) = sen(λ) +
y′.cos(λ) = 0 ∴ y′ = f(x, y) = −tg(λ).

Na Figura 5 notamos a família f(x, y, λ) = x ·
sen(λ)+y ·cos(λ)−d·cos(λ)·sen(λ) que descreve um
conjunto de retas no plano. Evidenciamos uma reta, em
cor vermelha nesta figura, que possui como trajetórias
tangentes às curvas conhecidas como astroides.

Por outro lado, considera também a famí-
lia de elipses f(x, y, λ) = λ−2 · x2 + (1 −
λ)−2 · y2 − d2 = 0, com 0 ≤ λ ≤ 1, Repe-
timos o procedimento, e tomaremos o sistema{

f(x, y, λ) = λ−2 · x2 + (1− λ)−2 · y2 − d2
∂f
∂λ (x(λ), y(λ), λ) = λ−3 · x2 − 1(1− λ)−3 · y2 = 0

Encontraremos, pois, a expressão correspondente a
x2 = λ3 · (1 − λ)−3 · y3 e, substituindo na família
inicial, obteremos, por fim, que y2 = d2 · (1 − λ)3

e x2 = d2 · λ3. Vilches (2009, p. 23 - 24) explica
que se pode obter, mais uma vez, a equação a astróide
x2/3 + y2/3 = d2/3.

Vamos discutir e descrever com o Geo-
gebra, mais um exemplo comentado por Vil-

Figura 5: Vilches (2009, p. 23) exibe famílias de curvas a um parâ-
metro distintas com a mesma envoltória (a astróide).

ches (2009, p. 24). O autor considera{
f(x, y, λ) = (x2 + (y − λ)2) · (x− 2) + x = 0

∂f
∂λ (x, y, λ) = −2(x− 2)(y − λ) = 0

.

Fazendo as contas (2y − 2λ − xy + λx) = 0 ↔
λ(x − 2) = (xy − 2y) ∴ λ = (xy−2y)

x−2 . Substituindo
na primeira equação: (x2 + (y − λ)2) · (x− 2) + x =

0 ↔ (x2 + (y − (xy−2y)
x−2 )2) · (x − 2) + x = 0 →

x4 · (x − 2) + x = 0 ∴ x5 − 2x4 + x = 0. Daí,
podemos obter as raízes dessa equação. Por exemplo,
os valores x = 0 e x = 1 designam pontos singula-
res nas trajetórias descritas pela família f(x, y, λ) =
(x2+(y−λ)2)·(x−2)+x = 0. Um modo preciso de ver
isto, é determinar o vetor

(
∂f
∂x (x, y, λ), ∂f∂y (x, y, λ)

)
=

(3x2 − 4x+ 1 + (y − λ)2, 2(x− λ)(y − λ)) = (0, 0).
Vilches (2009, p. 25) assinala que a reta x = 2 cons-
titui uma assíntota vertical e não pertence a envoltó-
ria da família original, indicada há pouco no sistema.
As curvas dessa família possuem um laço de intersec-
ção, nos pontos (1, y) ∈ R2 (que indicamos na Fi-
gura 6) ao lado direito. Omitiremos o teorema empre-
gado por este autor que permite precisar, com maior
exatidão, os pontos singulares da família f(x, y, λ) =
(x2 + (y−λ)2) · (x− 2) +x = 0, entretanto, conforme
este autor, sua envoltória é apenas a reta vertical x = 0,
que indicamos na Figura 6, ao lado direito.

Vamos considerar a família de círculos f(x, y, λ) =
x2 + y2 − λ2 = 0. Sabemos que fx(x, y, λ) =
2x + 2yy′ = 0 ∴ F (x, y, λ) = x + yy′ = 0 que
possui a família anterior como solução. Definiremos,
pois, a seguinte função auxiliar, da seguinte maneira
G(x, y, λ) = F (x, y,−1/p) = y ·y′+x = (−1/y′)y+
x = 0 ∴ x · y′ − y = 0.

Ademais, se tem que y = xy′. Não obstante, as
Conex. Ci. e Tecnol. Fortaleza/CE, v. 8, n. 3, p. 67 - 74, nov. 2014 70



FAMÍLIA DE CURVAS PLANA E SUA ENVOLTÓRIA: VISUALIZAÇÃO COM O SOFTWARE GEOGEBRA

soluções desta última equação são descritas por retas
y = µx, com µ ∈ R. Divisamos seu comportamento
(das trajetórias ortogonais) na Figura 5. Vale acrescen-
tar que a envoltória dessas soluções é constituída pela
própria família de retas que indicamos por y = µx, com
µ ∈ R.

De modo sistemático, a partir da família f(x, y, λ),
obtivemos sua EDO correspondente F (x, y, y′) = 0.
Em seguida, se define G(x, y, p) = F (x, y,−1/p),
como assim indicam os autores Figueiredo e Ne-
ves (2002). Por fim, investigamos as soluções de
G(x, y, y′) = 0 que possui como solução a família
de curvas dadas por g(x, y, µ) = 0, em que µ ∈ R.
A última família de curvas a um parâmetro é uma fa-
mília ortogonal á família inicial que indicamos por
f(x, y, λ) = 0.

Figura 6: Identificamos os pontos singulares, retas assíntotas e a en-
voltória da família com o software Geogebra.

Figura 7: Trajetórias ortogonais de uma família de circunferências
com o software Trajetórias ortogonais de uma família de circunferên-
cias com o software.

Antes de retornar aos nossos exemplos, vale assi-
nalar que, do ponto de vista histórico, a descrição de
trajetórias ortogonais constitui esforço e empenho de
matemáticos no passado. Com efeito, Bassalo (1996,
p. 330) comenta que:

Um outro tipo de problema que contribuiu
para o desenvolvimento do Cálculo foi o dis-
cutido por Leibniz e os irmãos Bernoulli,
ainda na década de 1690. Com efeito, em
1694, Leibniz e John formularam o problema
de encontrar a curva ou uma família de curvas
que cortam uma outra família sob um ângulo
determinado. John observou que a solução
desse problema era importante para o enten-
dimento da teoria ondulatória da luz, proposta
por Huyggens, em 1690.

A ideia perspectivada e assinalada no excerto acima,
diz respeito ao comportamento de propagação dos raios
de luz num meio não uniforme, uma vez que, tais raios
são perpendiculares às frentes da onda luminosa. Bas-
salo (1996, p. 330) indica um exemplo atacado pelo
próprio Leibniz, ao tomar a equação y2 = 2λx , com o
parâmetro λ ∈ R . Bassalo recorda que tal nomencla-
tura foi atribuída ao próprio Leibniz. Neste caso, escre-
vemos f(x, y, λ) = y2 − 2λx = 0.

Figura 8: Problema resolvido por Leibniz, discutido em Bassalo
(1996) e significado com o software.

Em seguida, Leibiniz a derivou, obtendo 2y.y′ =
2λ ∴ λ = y.y′ = y dydx . Segue, pois, que y2 =

2(y dydx )x = 2xy dydx . Por fim, ao integrá-las, obteve:
y2 = 2xy dydx = −2xy.y′ ∴ −2xy.y′ − y2 = 0 2.
Por fim, Bassalo (1996, p. 330) aponta a obtenção da
seguinte equação y2 = −2xy dydx ∴ ydy = −2xdx.
Por fim, estabelecemos as curvas de nível V (x, y) =

2Sendo N(x, y) = −2xy.y′ e M(x, y) = −y2.
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y2

2 + x2 − c2, onde K = c2 ∈ R, que constituem as
soluções regulares de EDO anterior. Na Figura 6, colo-
camos em destaque propriedades relativas às trajetórias
ortogonais geradas por esta família.

Vamos tomar a seguinte família f(x, y, λ) = y2 +
λ(1 − 2x2) = 0 e indicar uma outra equação diferen-
cial ordinária, de modo que esta família constitua suas
trajetórias ortogonais. Com efeito, repetimos o mesmo
modus operandi assinalado anteriormente, e derivamos:
f(x, y, λ) = y2 + λ(1 − 2x2) = 0 ∴ fy(x, y, λ) =

2y.y′−2xλ = 0. Segue que y.y′−xλ = 0 ∴ λ = y.y′

x .
Segue que y2 + λ(1 − 2x2) = 0 → y2 + (y.y

′

x )(1 −
2x2) = 0 ↔ xy2 + y.y′ − 2x2y.y′ = 0 ∴ xy2 + (y −
2x2y).y′ = 0. Ou seja, temos o seguinte campo das di-
reções xy2 + (y− 2x2y).y′ = − xy2

(y−2x2y) . Reparemos,
todavia, que a equação (y − 2x2y).y′ + xy2 = 03.

Podemos, assim, obter as soluções desta equação
descritas por V (x, y) = x.e−x

2−y2 − k = 0. Aqui, in-
dicamos as limitações do software Geogebra, que não
produz equações descritas de modo implícito, em ter-
mos de outras funções, diferentes das polinomiais. Tal
entrave pode ser contornado com o uso de software de
computação algébrica, como o MAXIMA ou o MAPLE.

Para concluir, recordamos que, muitos problemas
físicos manifestam propriedades, em que as trajetórias
ortogonais (bem como outros tipos de trajetórias) estão
presentes e modelizam o referido fenômeno. Neste sen-
tido, recordamos que as curvas do fluxo do calor numa
lâmina são ortogonais a família de curvas de igual tem-
peratura (isotermas). Bem como as linhas do fluxo de
um campo elétrico ou magnético são ortogonais as cur-
vas equipotenciais.

Mas, consideremos a seguinte família f(x, y, λ) =
(x − λ)2 + y2 − λ2 + 1 = 0. Seguiremos o modelo
anterior para encontrar uma EDO que admite esta fa-
mília de soluções. Derivando a expressão anterior, es-
crevemos: x − λ + yy′ = 0 ∴ λ = x + yy′. Segue
que (x − x − yy′)2 + y2 − (x + yy′)2 + 1 = 0 ∴
(yy′)2 +y2−x2−2xyy′−(yy′)2 +1 = 0. Implica que
y2 − x2 − 2xyy′ + 1 = 0 ∴ y′ = f(x, y) = y2−x2+1

2xy .
Por fim, de acordo com Figueiredo e Neves (2002, p.
90), impomos a condição da intersecção de duas curvas,
num ponto, em que suas retas tangentes naquele ponto
satisfazem− 1

y′ = y2−x2+1
2xy ∴ (y2−x2+1)y′−2xy = 0

que é uma equação da forma (*). Com o fator inte-
grante µ(y) = 1

y2 . Por fim, encontramos g(x, y, η) =

x2 + (y + η)2 − η2 − 1 = 0.
Na Figura 9, divisamos duas famílias de curvas a

um parâmetro. Com relatamos anteriormente, deter-

3Sendo N(x, y) = (y − 2x2y).y′ e M(x, y) = xy2.

Figura 9: Comportamento gráfico-geométrico que descreve um fenô-
meno físico relativo ao comportamento dos campos.

minados fenômenos físicos podem ser descritos com
base na noção dessas e outras famílias que se apresen-
tam inviáveis com o uso deste software. Por exemplo,
quando consideramos x > 0, por intermédio deste mo-
delo, estudamos em Acústica o fenômeno de audibili-
dade. Vamos tomar, neste caso, a família de elípses
f(x, y, λ) = λ−2x2+(1−λ)−2y2−d2 = 0 e, de modo
semelhante, indicamos as astróides x2/3 + y2/3 = d2/3

a sua envoltória correspondente.

Concluímos, acentuando um exemplo indicado por
Vilches (2009, p. 30) ao discutir o comportamento de
uma envoltória correspondente a família f(x, y, λ) =
(x− λ)2 + (y + λ)2 −R2 = 0 que pode ser verificado
se constituir por equações do tipo x + y = ±R. Na
Figura 10, notamos um cilindro inclinado e, a partir da
intersecção com os planos λ = c, conseguimos prever
as projeções das curvas de nível obtidas por meio de
cada intersecção, no plano R2 (ao lado esquerdo).

Figura 10: Vilches (2009, p. 30) discute o comportamento de uma
envoltória a partir de projeção de um sólido tridimensional.
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3 CONSIDERAÇÕES FINAIS

Equações diferenciais ordinárias constituem estudo
compulsório na academia. Deparamos certos conceitos
que admitem um trato de natureza algébrica, bem como,
profícuas significações gráfico-geométricas. Assim, pa-
tenteamos, ao discorrer neste escrito, situações que per-
mitem romper um ritual, predominantemente de natu-
reza algébrica e que, em determinados casos, se mostra
inexequível, com vistas a uma descrição intuitiva, des-
provida de tecnologia.

Outrossim, no processo que permeia o sentido da
pergunta (i) e o sentido da pergunta (ii), exploramos
a visualização, atinente ao comportamento de gráficos
produzidos com o software Geogebra, por intermédio
de comandos acessíveis, que não exigem conhecimento
aprofundado em programação, entretanto, a preocupa-
ção didático-metodológica, que se consubstancia a par-
tir do design de abordagem das situações problema em
sala de aula (ALVES, 2013a; ALVES, 2013b). Outros-
sim, indicamos que as limitações deste software podem
ser supridas com o uso de um computer algebraic sys-
tem, como o MAPLE ou o MAXIMA.

Vale recordar, pois, a indicação de Figueiredo e Ne-
ves (2002, p. 49), ao comentarem que:

Em muitos problemas de aplicação não se
faz necessário saber a expressão algébrica das
soluções da equação diferencial. Basta sa-
ber propriedades dessas soluções, como por
exemplo, seu comportamento quando x tende
para algum valor pré-estabelecido. Com isto
em vista, é interessante e importante estudar
as propriedades geométricas da família de so-
luções da equação diferencial. Este é o outro
problema básico do estudo das equações dife-
renciais, que pertence à chamada teoria qua-
litativa.

Não buscamos realizar aqui, um estudo qualitativo
dos exemplos abordados, entretanto, alguns de elemen-
tos atinentes à teoria qualitativa foram visivelmente ex-
plorados, ao decorrer do trabalho, na medida em que,
com arrimo nas figuras apresentadas, parafraseando os
autores acima, estudamos e averiguamos propriedades
geométricas da família de soluções a um parâmetro de
um EDO e sua respectiva envoltória.

Por fim, outro fato que não pode deixar de ser men-
cionado, refere-se ao viés com que deparamos o en-
sino de EDO’s já há algumas décadas criticado (TALL,
1986). Neste sentido, trabalhos (ARSLAM, 2005; SA-
GLAM, 2004) realçam os aspectos negativos condici-
onados por um ensino que prioriza o quadro analítico,
em detrimento da abordagem geométrica ou numérica.

Deste modo, nos alinhamos ao pensamento e Figuei-
redo e Neves (2002, p. 92), quando advertem que “a
solução de um problema não é apenas uma fórmula ou
uma função, mas antes, algo pleno de significado e de
informações sobre o fenômeno que estamos conside-
rando.”
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