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RESUMO

Neste artigo discutem-se aspectos epistemoldgicos, filosoficos e historicos, relacionados aos niimeros
figurais, de origem grega, com configuragdes no plano (2D) e no espaco (3D). Assim, a partir da
apresentacdo introdutéria de um cendrio particular da civilizagdo helénica, registra-se a partir do relato de
autores (BURTON, 2006; CARACA, 1951; POPPER, 1972) que o interesse dos gregos por tais entidades
conceituais foi bem mais abrangente e sistemdtico do que preocupacdes padrdes e estanques com a
Aritmética e a Geometria. Destacam-se também os modelos matematicos formais que permitem a inspecio e
a formaliza¢do (por uso de Inducdo Matemdtica) de propriedades e padrdes identificados a partir das
relacdes conceituais entre Aritmética e Algebra. Por fim, destacam-se algumas consideracdes acerca do
ensino/aprendizagem e o modo como os conteddos discutidos no dmbito histérico podem favorecer de modo
auspicioso a formacao do professor de Matematica.
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THE HISTORY OF MATHEMATICS: FIGURAL NUMBERS IN 2D AND 3D
ABSTRACT

In this article, we discuss epistemological, philosophical and historical aspects related to figural numbers of
Greek origin, with settings in 2D plan and 3D space. Thus, from the introductory presentation of a
particular scenario of the Hellenic civilization, the account of some authors is registered (BURTON, 2006;
CARACA, 1951; POPPER, 1972) that the Greek's interest in such conceptual entities was much more
comprehensive and systematic than the usual and standardized concerns about Arithmetic and
Geometry. We also highlight the formal mathematical models which allow the inspection and formalization
(by using Mathematical Induction) of properties and patterns identified from the conceptual relations
between Arithmetic and Algebra. Finally, we emphasize some considerations about the teaching/learning
process and how the content discussed in a historical context can auspiciously favor the training of
Mathematics teachers.
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INTRODUCAO

Neste trabalho, discutimos o tépico conhecido como nimeros figurais, de origem grega, recorrentemente
abordado em livros de Historia da Mateméatica — (HM). A partir de extensa consulta de autores (BURTON,
2006; CARACA, 1951) reconhecidos, estendemos a discussdo envolvendo configuragdes em 2D e 3D das
referidas no¢des matemdticas que, para alguns pensadores (POPPER, 1972) além do cardter de relevancia
histérica, caracterizam e indicam o olhar epistemoldgico grego com respeito a propria Matemadtica.

A relevancia do viés filoséfico e epistemoldgico, de acordo com o que apresentamos € propomos heste
escrito, € fator de aperfeicoamento na constituicdo profissional do futuro professor de Matemadtica, bem
como o enriquecimento da visdo particular deste profissional necessaria a ser transmitida aos seus alunos.
Neste sentido, Gaspar (2003, p. 20) esclarece que:

(*) Doutor em Educacdo pela Universidade Federal do Ceard. Professor do Instituto Federal de Educacdo, Ciéncia e Tecnologia do
Ceard, campus de Fortaleza. E-mail: fregis @ifce.edu.br

(**) Doutor em Matemadtica pela Associagdo Instituto Nacional de Matemadtica Pura e Aplicada. Professor da Universidade Federal
do Ceard, Faculdade de Educag@o, Laboratério Multimeios. E-mail: herminio @ufc.br

(***) Doutor em Matematica pela Universidade Federal de Minas Gerais. Professor da Universidade Federal do Cear4.
E-mail: alberto.duarte @ufc.br

Conex. Ci. e Tecnol. Fortaleza/CE, v. 6, n. 2, p. 40-56, jul. 2012.
40



HISTORIA DA MATEMATICA: OS NUMEROS FIGURAIS EM 2D e 3D

na pritica de ensinar matematica, geralmente o professor adota um “modelo de ensino” que
contém elementos de sua prépria experiéncia como estudante. Com esse modelo,
acompanham idéias a respeito: do papel do professor (geralmente um expositor) e do aluno
em sala de aula; do modo como o livro texto pode ser utilizado; dos tipos de problemas
existentes em uma sala de aula, de atividades a ser desenvolvidas com os alunos e de
avaliacdes a ser aplicadas. Na realidade, cada professor possui um modelo ou uma
caracterizacdo do que é a Matematica e como esta pode ser aprendida pelos alunos.

Observamos, ainda, que o “modelo de ensino” referenciado pelo autor é condicionado pela propria natureza
do conteido especifico do ensino, assim, ndo podemos descuidar do seu carater epistemoldgico. Mais
adiante, Gaspar (2003) aponta as vantagens do tipo de abordagem que evidencia a dimensdo histdrica e
epistemoldgica do saber matemadtico. Ademais, acentua a perspectiva do estudante, ao colocar em énfase
que:

além disso, o estudo histérico de um determinado conceito matematico propicia ao
estudante um contexto em que colocar esse conceito ajudando-o a apreciar sua importancia
para aqueles grupos sociais nos quais o conceito emergiu, sua importancia interna a prépria
matemadtica e a entender mais claramente quando esse conceito é necessdrio ou ndo no
discurso matemadtico (p. 21).

Destaca-se também neste trabalho a apresentacio de modelos matemdticos, formais, desconhecidos, naquela
época, dos gregos e, que, em nossos dias, proporcionam a confiabilidade e veracidade de propriedades
muitas vezes empregadas por uma via intuitiva pela civilizacdo que mais contribuiu para a sistematizacio
deste saber cientifico.

Por fim, nosso maior propésito é fornecer uma abordagem envolvendo contetidos de Histéria da Matemaética
- HM *“aplicaveis” no contexto escolar, mas com o cuidado de se evitar o cardter meramente episddico,
figurativo, novelesco ou aneddtico dos contetidos de HM. Assim, o futuro professor podera conhecer os
modelos matematicos explorados no passado e podem ser abordados com amparo histérico e epistemoldgico.

0S NUMEROS FIGURAIS E A FILOSOFIA GREGA

O vigor, a criatividade e a genialidade de figuras emblemadticas gregas é objeto de reflexdo para vérios
autores (POPPER, 1972). Neste sentido, destacamos o exemplo analisado e discutido por Popper (1972, p.
103) relacionado com a crise do atomismo original grego. Popper defende que “a doutrina filoséfica de
Platdao, a chamada teoria das formas ou ideias, ndo pode ser entendida sendo dentro de um contexto
extrafilos6fico — mais especificamente, o contexto da situagdo-problema da ciéncia grega.”.

Popper sublinha o contexto da discussdo referente ao problema da descoberta da no¢cdo de matéria resultante
do cardter irracional da raiz quadrada de dois. Popper (1972, p. 104) explica que “parece provavel que a
teoria das formas de Platdo esteja intimamente associada, na sua origem, € no seu conteido, a teoria
pitagérica de que todas as coisas sdo, essencialmente, niimeros. Por outro lado, tal afirmacgdo € dificil de se
verificar.”(CARACA, 1951, p. 72).

Note-se que Popper (1972) fornece sua perspectiva pessoal, referente a “problemadtica grega”, apontada no
paragrafo anterior. Com efeito, Popper menciona que

[...] ao que parece, o fundador da ordem ou seita pitagdrica estava profundamente
impressionado com duas descobertas: a de que um fendmeno aparentemente qualitativo,

como a harmonia musical, dependia de razdes numéricas - 1:2 ;2:3;3:4; e a de que o

angulo “reto” refletia as razdes numéricas 3:4:5 ou 5:12:13 (os lados de um tridngulo
retdngulo). Estas duas descobertas teriam levado Pitdgoras a generalizacdo algo fantéstica
de que todas as coisas sdo, em essé€ncia, nimeros ou propor¢des, de que o nimero € a razao,
a esséncia racional das coisas, da sua natureza real (p. 104).

Apoiado nestas descobertas e nas ideias que evoluiram a partir deste marco divisamos, no pensamento grego,
sobretudo no pensamento mais influenciado pelos pitagdricos', o tratamento e varias aplicagdes no contexto

! Caraca (1951, p. 68) diz que “é seguro que, a partir do século VI a. C., existiu e exerceu larga influéncia da Grécia
uma seita, de objetivos misticos e cientificos, denominada escola pitagérica, dela parece ter sido Pitdgoras o fundador.”.
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de situagcOes-problema no contexto da Geometria. Popper (1972, p. 104) destaca que “o tratamento destes
problemas geométricos se baseavam no chamado gnémon”z, que, de acordo com Kline (1972, p. 31), tem sua
origem na Babil6nia.

Figural: Popper (1972, p. 104-105) descreve a nocao de gnémon.

Primeiro gnomon Seguado gnomon

Popper (1972, p. 104-105) explica que “se indicarmos um quadrado (figura 1, lado esquerdo) por meio de
quatro pontos, isso pode ser interpretado como o acréscimo de trés pontos a um ponto original, situado no
lado esquerdo superior.”. Esses trés pontos constituem o primeiro gnomon. Em seguida diz, que
acrescentando o segundo gnomon, com outros cinco pontos, chegariamos a figura 1, indicada acima (lado
direito). Mais adiante, conclui que “cada nimero de sequéncia de ndimeros impares 1,3,5,7,...... forma um

gnomon de um quadrado.” (p. 105).

Popper (1972, p. 107) extrai reflexdes proficuas ao afirmar que “a teoria de Pitdgoras, com seus diagramas
feitos de pontos, contém sem duvida a sugestdo de um atomismo muito primitivo.”. De fato, nestes como em
outros exemplos de diagramas constituidos de pontos, que os helénicos relacionavam com formas
geométricas sdo um indicativo disto. Ademais, as “formas” eram consideradas nimeros, ou “razdes’ entre
nimeros. Por outro lado, qualidades abstratas, como harmonia e a retiddo, eram vistas também com nimeros.
“Desse modo, se chegou a teoria geral de que os nimeros sdo as esséncias racionais de todas as coisas.”
(POPPER, 1972, p. 106).

Ao decorrer do texto, Popper (1972), além de discutir alguns mais alguns casos e diagramas constituidos de
pontos relacionados com as formas de Geometria Plana, emprega nomenclaturas particulares, sem explicitar,
com exatiddo, a origem e significado das mesmas. Assim, ele comenta outros diagramas semelhantes ao que
exibimos inicialmente e fala de niimeros quadrados, nimeros triangulares e nimeros oblongos. Concluimos,
apos esse pequeno interregno filoséfico, que, na préxima se¢do, nos deteremos ao estabelecimento de bases
formais para estes entes conceituais apontados por Karl Popper.

OS NUMEROS FIGURAIS GREGOS EM 2D

O historiador matemadtico Eves (1969, p. 53) explica que “os antigos gregos faziam a distin¢io entre o estudo
das relagdes conceituais entre os nimeros e a arte pratica de contagem.”. O autor recorda que os pitagéricos
falavam de nimeros que pretensamente possuiam propriedades misticas, como os numeros perfeitos,
nimeros deficientes e nimeros abundantes; entretanto, nesta se¢do, nos deteremos ao estudo dos nimeros
figurais que, de acordo com Eves (1969, p. 54) se originaram com os primeiros membros da sociedade
pitagérica. Em esséncia, os nimeros figurais apresentavam as ligacdes entre a Aritmética e a Geometria,
como vemos na figura 2, algumas disposi¢des comentadas por Eves (1969).

? Estrada et al (2000, p. 234) acentua que “o conceito de gnomon foi importante na matematica grega. O termo assumiu
varios significados ao longo dos tempos e com diferentes autores [...].”.
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Figura 2: Nomenclatura para os nimeros figurais gregos descritos por Eves (1969, p. 55).

Triangular numbers
. AN ,& A
6 10

Square numbers

1 4 9 16
Pentagonal numbers
1 5 12 22

Vale recordar que, nos comentarios devidos a Popper (1972) identificamos que o autor nio apresenta, como
objetivo principal, demonstrar as propriedades que surgem a partir das disposicdes geométricas que
observamos acima. De fato, o autor emprega o raciocinio indutivo em alguns argumentos, todavia, nao aplica
o principio da Inducdo Matemadtica que constitui um dos Axiomas de Peano (LIMA, 2010, p. 34). Além
disso, do ponto de vista histdrico, os gregos desconheciam o modelo de verificacdio e demonstracio
matematica baseado na Indu¢cdo Matematica, sistematizado pelo matematico Giuseppe Peano (1858-1932).

Feita esta pequena digressao histdrica, salientamos que nos resultados seguintes, apesar de intrinsecamente
vinculados a no¢do de nimeros figurais, as demonstracdes que discutiremos se apoiam num forte principio
que exige que “saibamos definir objetos indutivamente.” (LIMA, 2010, p. 35). Para iniciar, observando as
disposigdes na figura 2, descrevemos o conjunto {1,3,6,10,...... yeeeees 1yeeeen ). Note-se que, com o objetivo de
adicionar um maior indice de rigor relativo aos objetos conceituais, que discutiremos, e proceder a
“higieniza¢io™” das propriedades matematicas que apresentaremos doravante, atribuimos as seguintes
notagdes para a lista anterior: 7, =1;T,=3;T,=6; T, =10 ...... .(9).

Os numeros figurais acima sdo conhecidos como nimeros triangulares e, de imediato, o primeiro problema
que se coloca € a descri¢do de um numero triangular de ordem elevada. Outra questdo interessante € o modo
ou o padrdo que observamos para a obten¢do de um nimero triangular a partir do seu antecessor. Neste caso,

notamos que: 7, =1;7,=T,+2;T,=T,+3;T,=T,+4. Assim, dado ne€ IN, usando o raciocinio
indutivo, escrevemos T, =T +(n+1), para n=1(**). Reparamos que Khoshy (2007, p. 40) sugere o

seguinte diagrama recursivo.

? Choquet (1963, p. 9) recorda que o matemético André Weyl dizia que a aplicagio da légica proporcionava a
‘higieniza¢do’ do matematico e assegurava o rigor.

Conex. Ci. e Tecnol. Fortaleza/CE, v. 6, n. 2, p. 40-56, jul. 2012.
43



HISTORIA DA MATEMATICA: OS NUMEROS FIGURAIS EM 2D e 3D

Figura 3: Diagrama da recursividade descrito por Koshy (2007, p. 40).

Todavia, esta férmula ainda apresenta sérios inconvenientes, uma vez que, para calcular o ndmero triangular

T

l00» Decessitamos saber o valor de 7;,. Uma maneira eficiente de superar este problema consiste em

observar as somas em (*); e notar que: 7, :lzﬁzw, T, :l+2:3:3'2: 23 = 2'(2+1),

2 2 2 2 2

6:2 34 3.3+

T,=1+2+3=6= 3 , etc.. Notamos que empregamos apenas as regras axiomadticas

permissiveis nos conjuntos numéricos. Deste modo, suspeitamos a pertinéncia da seguinte propriedade, para
n-(n+1 - ,

um n€ IN qualquer: 7, =1+2+3+---+n= % , para verificar a mesma propriedade para todos os

n-(n+1)

naturais, definimos o conjunto indutivo R:={ne IN| T, = } e reparemos que 1,2,3¢ R#J. 0

passo indutivo requer a verificagio de que se n€e R —n+leR. contudo, escrevemos

T =14243++n+(n+l) n-(n+1) ] (n+)(n+2) _ (n+D((n+1D)+1) .
2 2 2
o . - .. . n-(n+1)
Pelo principio de indugdo matemdtica, concluimos que n+le Ri={ne IN| T,=———} . R=IN.

Isto quer dizer, do ponto de vista 16gico, que a referida propriedade vale Vne IN. No que segue,
simplificaremos alguns destes argumentos que admitimos como de conhecimento do leitor. Deste modo,
enunciamos nosso primeiro teorema.

Teorema 1 O tnico nimero triangular primo 7, é 0 3, onde n>1.

~ . : . n(n+1) n € par
Demonstra¢do: De fato, vimos por indugdo que T, =——— onde n€ IN < o . Se n for par,
n é impar
digamos que n=2k onde ke IN, segue-se que: 7T,, 2%2 k(2k +1) . Assim, o dnico caso em

que temos um ndmero primo ocorre na condi¢cdo em que k =1o0u (2k+1)=1<> k=0 o que nédo ocorrer
segundo nossa defini¢do inicial.

Assim, s6 temos a possibilidade para k =1—>n=2-1..T, = M =3. Na outra situagdo, pode ocorrer
2k +1)(2k +2
que n =2k +1 é impar. Dai, escrevemos: T,,,, = (2k ); k+2) (2k +1)(k +1) e, neste caso, nenhuma

das expressdes pode ser a unidade, ou seja: (2k+1)=1ou (k+1)=1k=0.

Consultando, mais uma vez, a figura 2, assumimos as seguintes notacdes para a colecdo
U0, 000,21 ={1,4,9,16,....} = {12,22,32,42,....} . A partir da inspecdo destes casos iniciais,
observamos a propriedade de poténcias com expoente 2’.
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Por hipétese de indugdo, escrevemos [] = n® [ ?; todavia, notamos que cada nimero quadrado

n+l

(POPPER, 1972, p. 105) pode ser obtido a partir do seu antecessor, da seguinte forma:
,=1+3, ;=3+6;,=6+10, e observamos as relacdes entre os nimeros triangulares com o0s niimeros

quadrados da seguinte forma: [,;=25=10+15=T, +T;. Notamos que para n =1, podemos escrever:
2 2
n’ = n—‘i‘ﬁ-l-n——ﬁ I (n+1) + (n=1)-n =T,+T,, . Por inducdo matemdtica, estabelecemos:
2 2 2 2 2
0.,=0,+n+D+(n+1)—1=0+2n+1 = n’*+2n+1=((n+1)".

Hipotese
Indutiva

Figura 4: Koshy (2007, p. 44) descreve a forma recursiva nos nimeros quadrados.

Reparemos na ultima linha, que usamos o fato de que acrescentamos uma linha e uma coluna com a ordem
acrescida de uma unidade para obter o préximo nimero quadrado. E como nio podemos repetir o elemento,
retiramos uma unidade no final (figura 4). Com isto, demonstramos basicamente o préximo teorema.

Teorema 2:(Theon de Smyrna, 100 a. C.) Todo nimero quadrado é combinagdo de dois ndmeros
triangulares.

Demonstragdo: Dado n >1, escrevemos [ =n* =T, +T

n-1"°

Podemos conjecturar esta propriedade a partir
da figura 4, lado direito.
Teorema 3:(R. B. Nelsen, 1997) Dado 121, temos a relagio T, +T,) =T ...

~ ~ 2, 2 _ 12, 72 2’-(2°+1)
Demonstragdo: ~ Observamos  as  relagbes 1" +7; =1"+3"=10=2-5=—"—+=T,

2 2 2
7 +T2 =32 +6° :9+36:45:%:3 210:3 (32 D _

2 2 . . : _
escrevemos: 1", +7T° =T , . Em seguida, analisamos a seguinte expressao:
n

T32. Usando a hipétese de indugdo,
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=(T,,+n) +(T, +n+1) =[T2, +T}1+2n-T, , +n* +2(n+ DT, + (n+1)* =

2n(n—-1)n 4 2(n+1Dn(n+1)
2 2

=[T.]+(n=-Dn’+n’ +n(n+1)°+(n+1)’ =[T.]1+(n-Dn* +n’ +n(n+ 1>+ (n+1)* =

(n> +1)
2

T +T)

n+l

=[T.]+ +(n+1)? =[Tn2]+n(n—1)n+n2+(n+1)n(n+1)+(n+1)2 =

2 2

2
(n>+1+2n

2

2 2 2
=(n+1)2{[%]}:(;¢+1)2 {[M]}:m_ﬂ)z {[w]}:” )]

(n-Dn’+n*+(n+D(n+D*=n*[ +(n-D+11+(n+Dn+1)?* =

J+(n+D)(n+1)°>=n"[

ot (n+1)’
2

1+ (n+D(n+1)?* = (n+1)2[n2 ~[%]+(n+l)} =
2 (n+1)

Coroldrio 1: Dado n =1, temos as seguintes relagdes:

(a) 8-T +1=1, . (Diophantus de Alexandria, 200 a. C.);

(b) 8T, +4n=l,, .

Demonstragao: No item (a) temos de imediato que
+1

8-T +1=8- n(nt1) +1=4n(n+D)+1=4n" +4n+1=2n+1)* =1, E no item (b) escrevemos
(n—=Dn 2

8T ,+4n=8- +4dn=4n(n—-1)+4n=—4n+4n" +4n=],, .

Burton (2006, p. 100) discute 0s seguintes padrdes aritméticos:

P=T7;1+2=148=9=T] ; P +2°+3’ =148+27=36=T; ; ' +2° +3’+4’ =1+8+27+64=100=T,

E observa que, do lado direito das identidades, temos o quadrado de niimeros triangulares. Tal padrio
possibilita conjeturar que a soma dos ‘n’ cubos de nimeros € igual ao quadrado do n-ésimo niimero
triangular o que nos proporciona enunciar o préximo teorema.

Teorema 4:(Nicomachus, 60 a. C.)Dado n 21, temos que 1’ +2° +3* +--.+n’ =T7.

Demonstragdo: Para tal, Burton aconselha olhar as seguintes igualdades e somando-as, obtém relacOes
interessantes como indicamos abaixo a direita.

1=r

3+5=2’

7+9+11=3

13+15+17+19=4 =S143+5+ 7+ Hnn-D+2n-D)| =P +2+3 +--+1
214+23+25+27+29+31=5

[n(n=D)+1]+{n(n—1)+3] +... H{n(n—1)+Qn—-1)] =r’
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Por outro lado, Burton (2006, p. 100) aconselha observar

[n(n—1)+1]+[n(n—1)+3]+....+[n(n—1)+(2n—1)]=[n2—n+1]+[n2—n+3]+.-.+[n2—n+(2n—1)]=
:[nz—n+l]+[n2—n+3]+~-+[n2+n—1]:|:n2—n+l]+|:n2—n+3]+~-+[n(n+l)—l]:

zz{n(nz—l)+1}+[n2_n+3]+...+[n(n+1)—1]

=1, .

n(n+1)T e

Burton (2006, p. 100) conclui escrevendo 1° +2° +3* +...+ 1’ = {

» _n(n+D(2n+1)

6 .
Demonstragdo: Desenvolveremos a ideia de Burton (2006, p. 108) quando explica que “o mesmo resultado
foi obtido também por Arquimedes (287-212. b. C.)”. Para o seguinte diagrama que envolve a ideia de somas

os niimeros quadrados que passamos a descrever.
Com esse objetivo, por meio de uma contagem e completando a figura do lado esquerdo, imaginamos do

Teorema 5:Para n€ IN ,temos 1> +2>+3* +4* +---+n

lado direito, a seguintes equivaléncias numéricas: (12 +2° 43 +4° ) + (1 +3+6+ 10) = (1 +243+ 4) (4 + 1)

niimeros quadrados linhas horizontais base do retangulo | \ altura

Figura 5: Diagrama explicativo de Burton (2006, p. 100)

Em seguida, observa que (1> +27+3” +47)+(1+3+6+10) =(10)(5) . (" +2° +3’ +47) =50—(1+3+6+10),
4-5-9 4-(4+1)(2-4+1)
6

. ~ 2 2 2 2 2
sugere um diagrama semelhante para prever o comportamento padréo para a soma de 1°+2"+3"+4°+5°,
e usando o mesmo raciocinio, podemos escrever:

ou seja, para n=4, temos (12 +22 437 +42) =50-20=30= . Em seguida,

(12+22+32+42+52)+(1+3+6+10+15):(1+2+3+4+5)(4+2).-.

niimeros quadrados linhas horizontais base do retangulo altura
5:6:11 _ 5-(5+1)-(2-5+1)

P+2°+3°+4°+5°=15-6-(1+3+6+10+15)=90-35=55= p
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Figura 6: Diagrama generalizado de Burton (2006).

l+2+3+4+5 !
1+2+3+4
1+2+3 in=25)
1+ 2 52 5
_1_2

1 . 32

2..
JE
1 2 3 El o

Em seguida, dado ne€ IN , o autor escreve S = 1*+2*+3*+4* +---+n*. Burton (2006, p. 109) observa
que as dimensdes do retdngulo no n-ésimo passo sdo de (1+2+3+---+n)(n+1). E que a outra parcela
pode ser descrita por

(l+3+6+10+....+(1+2+....+n))=((l)+(1+2)+(1+2+3)+---+(l+2+3+---+n)), ou podemos

linhas horizontais

12 23 3-4  n(n+tl)

escrever ainda: (— + 4

2

j. Agrupando todos os termos e usando a relacdo

1.2 23 34 n(n+1)

generalizada, baseada no diagrama: S +(—

+—+— =(14+2+3+-+n)(n+1)=
S5t j( n(n+1)

2
-(n+1)HS+%(1-2+2-3+3-4+---+n(n+1))=n(n;1) ,

s+(ﬂ+2_;+ﬁ+ +n<n+1)j:n<n+1)

> i > >

2
ou ainda, reagrupando os termos desta soma: S +%(1 24+2-343-44---+n(n+ 1)) = nntl)” <

+%(1(1+D+2(2+1)+3(3+1)++n(n+1)) :m o

2
HS+%(12+22+32+42+---+n2+(1+2+3+---+n))Z—H(H;D oS+ Z(S.n(nﬂ)) nnt)

2 2
oS+ S n(n+1) n(n+1)2 H§ _ nn+1y¥  nn+) _ (n+D)2n(n+1)—n) _n(n+1)(2n+1)
4 2 2 2 4 4 4
Finalmente, Burton (2006, p. 103) conclui que % = n(n+ 1)4(2n *+1) S = n(n+ 1)6(2n +1) .

Nossa proxima discuss@o envolve as configuracdes da figura abaixo que caracterizam os nimeros que nao
representavam quadrados perfeitos, chamados oblongos (KLINE, 1972, p. 30) ou niimeros retangulares. A

partir delas, escrevemos a adotamos a seguinte notagdo: Op =2=1-2;0b,=6=2-3; Ob,=12=3-4; etc..
Conjecturamos que, prosseguindo com o0 mesmo raciocinio indutivo, para n€ IN e n 21, escrevemos o n-

ésimo niimero oblongo por Ob, =n-(n+1) (figura 6).
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Figura 7: Nimeros oblongos (elaboracio prépria).

0000
00 0000
00 0 0000

000 op=-12-34
oh=2=12 00 Obfﬁ:zaooo 0000
00 000 0000
0000

Ob =20=4.5

Kline (1972, p. 31-32) explica uma possivel regra para a obtenc¢do dos demais niimeros figurais.

Figura 8: Formas de obtenciao dos demais niimeros figurais descritas por Kline (1972, p. 32).

Vamos consultar mais uma vez a figura 2 e descrever os nimeros pentagonais (EVES, 1969, p. 55) pelo
I-(3-1-1
conjunto {1,5,12,22,....}={BR,P,,P.,P,....}. Mas reparemos que P =1:%,

2:(3-2-1) , P,=22=14+4+7+(3-4-2).Por

333

B=5=1+4=1+(32-2)= . B=D=1+4+7=144+(3.3-2)=

inducdo, conjecturamos que P =1+4+7+---+(3-n—2). No que segue, estabelecemos por indugdio
n-Bn-1)

5 . Por outro lado, Eves (1969, p. 56) observa,

matemdtica que: P =1+4+7+---+(3-n-2)=

“(3n-1 ~1)-
ainda, que P, =% = n+3[%} =n+3-T _,. Que verifica a relagdo com os nimeros

triangulares e que pode ser conjecturada a partir do seguinte diagrama.
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Figura 9: Decomposicao de um niimero pentagonal, sugerido por Eves (1969, p. 56) e suas relacdes com os
niuimeros triangulares e quadrados observados em Koshy (2007, p. 47).

ARl ey,

Observando 0 diagrama acima, do lado direito, €SCrevemos:
L+HL,=P T H,=PF ;T,+,=P, ;..;T Hl =P Com base nestes resultados, demonstramos

— fael

facilmente dois teoremas.

Teorema 6: O tnico ndmero pentagonal primo € o 5.

Demonstra¢do: Supondo que n € par, digamos que n =2k ... Pent, = para n=1. Assim, teremos

n(3n-1)
2

_ 2k(3-2k-1)

sek=1—>1-(6-1)=5
gue Pent,, —#:k%k—l)ﬁ

se k>1 ndo pode ser primo!’

Agora analisemos 0 caso em que n=2k+1, observando que

_ (2k+D@BR2k+1)-1) _ 2k +1)(6k +2)
2

2%+l
2

.. Pent

=2k +1)(3k+1) que do mesmo modo ndo pode

ser primo.

Teorema '7: Qualquer nimero pentagonal é um terco de um nimero triangular.

3n-1
Demonstragao: Ja vimos que Pent, = M .

n

Assim, fazendo

m+1

7-’/’1
m+1H 3 :lxm(m+1):le‘
2 3 2 3"

m=3n-ln=

Nossos proximos niimeros figurais gregos a ser discutidos sdo chamados de niimeros hexagonais. Os autores

Conway & Guy (1969) fornecem a seguinte lista numérica
{1,6,15,28,65,.....} ={Hex,, Hex,, Hex,, Hex,,.....} .
A partir dela, observamos que

Hex, =1=1-(2-1-1) ,Hex, =6=2-(2-2-1), Hex; =15=3-(2-3-1); Hex, =26=4-(2-4-1),.....

Por outro lado, para verificar que n+le R:={ne IN| Hex,K =n-(2n—1)}, empregamos as relacdes:

n(3n-1) N (n—Dn _ 3n* —n+n*—n _

Hex, =T, ; Hex, =P, +1, ; Hex, =B +T,;...; Hex, =P +1, _, = > > >

=2n—n=n-2n-1)
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Figura 10: Os niimeros hexagonais descritos por Conway & Guy (1969, p. 40).

Ry .- .eo-.;"“:% 16152865

Teorema 8 :Todo niimero hexagonal é um niimero triangular.

Demonstracdo: De fato, sabemos que Hex, =n(2n—1)=n+4-T _, . Assim, segue que
_nn=1) 3n(n-1) _ 4n” =2n _ (2n—-1)(2n—1+1) m=2n-1

=n+T,_)+3-T_ =T, +3-T,_
2 2 2 2

_ m(m+1)

3 =T, (triangular de ordem m) onde m=2n -1

Com base nas propriedades discutidas até agora, enunciamos as seguintes propriedades.

Proposigdo : Com relagdo aos numeros figurais, temos as seguintes relagdes.

a) P=n+3-T b) Hex, =4-T_ +n

Demonstragao: No item (a) sabemos que
Pent, = n(31; D = 3n 5 %= 2n+3; 3n =n+3- (n—Dn =n+3-T,,. No item (b) Sabemos que
Hex, =n(2n—1) = 2n(2n—1) _ 4n” —2n _ 4n"+2n—4n 4 nn—1) @_4 T +n.
2 2 2 2 2
Para concluir esta se¢do, Conway & Guy (1996, p. 39) descrevem uma maneira analitica engenhosa de
n+T, =T,
n+2-T =1
n+3-T, =P,

n+4-T = Hex,
n+5-T _, = Hept, .
n+6-T,_, =0ct,
n+7-T_, =Non,

obtermos os niimeros heptagonais, octogonais, etc...a partir das relacoes:

Podemos comparar agora a figura 6 com estas relagcdes acima. Ademais, Hindin (1978, p. 561) fornece a
n[(r=2)n—r+4]

2 ,onde n>1 e r =3 descreve o n-ésimo niimero figural de

seguinte formula geral p’ =
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r lados. Tal descricdo proporciona uma descricdo, de imediato, para qualquer um dos ndmeros que
discutimos até agora, por meio desse modelo generalizado.

OS NUMERGOS FIGURAIS EM 3D

Popper (1972, p. 106) menciona sem maiores explicagdes que o raciocinio grego aplicado as formas
geométricas planas, foi estendido aos sélidos, apesar das dificuldades de identificar as configuragdes em 3D
que sugerem a discussdo dos mnimeros piramidais, ou mais especificamente, nimeros piramidais
triangulares, niimeros piramidais quadrados, niimeros piramidais pentagonais (KOSHY, 2007).

Estrada el al (2000, p. 232) faz um comentario interessante quando observa que

a busca de esquemas retangulares para representar os nimeros terd conduzido ao conceito
de divisibilidade. Os ndmeros primos sdo os que apenas admitem a representagdo
retangular, trivial (todos dispostos numa s6 fila). Pelo contrdrio, os nlimeros que admitem
uma ou mais representacdes retangulares ndo triviais diziam-se nimeros planos (depois
ditos nimeros compostos). Dai é facil passar também a considera¢do dos nimeros com
representacao tridimensional ndo trivial, que se chamaram ndmeros sélidos.

Na figura abaixo exibimos os primeiros niimeros sélidos.

Figura 10: Os niimeros piramidais discutidos por Koshy (2007).

Os primeiros s@o obtidos tomando-se sucessivamente os correspondentes nimeros figurais em 2D. Para
tanto, Koshy (2007, p. 49) apresenta os ntimeros piramidais. Os mesmos sdo constituidos a partir dos

ntimeros triangulares da seguinte forma: Pir} =1, Pir;, =T, +T, =143=4, Pir; =T, +T,+T,=1+3+6=10, Pir; =20.

De um modo geral, determinam-se Pir;’ = sz .
i=1
i(i+1)

Por outro lado, j4 inferimos ha pouco que um niimero triangular por ser descrito por 7, = T , assim,

_ . < (i +1
substituindo, decorre que: Pir;' = ZTI = Z ( ). Por outro lado, podemos mostrar por indugcdo
i=l

i=1 2
matemdtica que:
ii(i+l) _ n(n+D)(n+2)  (n+2)(n+Da(n-1! _ (+2)!  (+2)! (n+2
o 2 Indugdo 6 6(n—-1)! 3l(n=1! 3l(n+2-3)! 3

Consequentemente, podemos escrever daqui por diante, o i-ésimo niimero piramidal de base triangular

(Pir; ) como um elemento presente no tridngulo de Pascal. Na figura abaixo, Koshy (2007) descreve a

maneira recorrente de obtengdo dos niimeros piramidais de base tridngular, para ordens mais elevadas.
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Figura 11: Modo recorrente de se obter os niimeros piramidais segundo Koshy (2007).

nim+1)/2

Podemos inferir a partir da tabela acima que: 35=20+15.. Pirs3 = Pir43 + 7. De modo geral, por indugdo

nn+1)

s, . 3 . 3 . 3 . s .
matemdtica, escrevemos Pir’ = Pir,  +T, = Pir,  + , para n=1. Com o mesmo raciocinio, a

partir dos niimeros figurais no plano, definimos os nimeros piramidais de base quadrada por:
Pir} =1, Pir; =5, Pir; =14, Pir; =30. Na sequéncia, Koshy (2007, p. 50) fornece os niimeros piramidais
de base quadrada em suas disposicdes espaciais.

Na tabela abaixo vemos as indicacdes de Koshy (2007, p. 51) para obter seus valores numéricos
correspondentes. De fato, vemos que 55=30+25 ... Pir;' = Pir, +J, . Mais ainda, podemos escrever um

z z +1)(2n+1
numero piramidal qualquer, de base quadrada, por Pirn4 = ZDi = Ziz = n(n+DEn+1) .

i .
pary P Indugdo 6

Figura 12: Obtencao dos niimeros piramidais a partir dos niimeros quadrados segundo Koshy (2007).

n 1 2 3 4 > i
Sy 1 4 9 16 25 n*
—
— L
i 1 5 14 30 35 ?

Vamos definir, agora, os numeros piramidais de base pentagonal. Denotamos e definimos a partir da

sequéncia dos nimeros pentagonais {1,5,12,22,....}; estes entes por:
Pirl =1, Pir; =6=1+5, Pir, =18=6+12, Pir; =40=18+22, Pir; =75=40+35. Na tabela abaixo
n(3n-1)

fornecida por Koshy (2007, p. 51) estabelecemos Pirn5 = Pirns_1 + Pent, = Pirns_1 + ,para n>1.

Figura 13: Modo recorrente de se obter os nimeros piramidais segundo Koshy (2007)

i 1 2 3 4 5
P 1 5 12 22 33
P" 1 f 18 0 75
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Por fim, Koshy (2007, p. 52) descreve a forma de obtencdo dos niimeros piramidais hexagonais ou de base
hexagonal. A partir da tabela, observamos as relacdes

Pir, =1; Pir; =7 =146 ; Pir, =22=15+7 ; Pir, =50=28+22 ; Pir, =95=45+50. Partindo

deste diagrama, podemos escrever Pirn6 = Pirf_1 + Hex, = Pirf_1 +n-(2n—1), para n>1.

Figura 14: Obtencao dos niimeros piramidais a partir dos niimeros hexagonais segundo Koshy (2007).

CONSIDERACOES FINAIS

Discutimos nas se¢des passadas a no¢do de niimeros figurais que se constitui um tépico recorrentemente
abordado por vdrios autores de artigos e livros de Historia da Matemdtica (ALVES, BORGES NETO &
MACHADO, 2008; ALVES, 2011; ALVES & BORGES NETO, 2012; BURTON, 2006; ESTRADA et al.
2000; FAUVEL & MAANEN, 2002; FOSSA, 2001; KLINE, 1972) de qualidade reconhecida; entretanto, ao
decorrer do desenvolvimento do texto, dentre os tipos de abordagens observadas, assumimos aquela que
assume a relevancia do estudo da Matemadtica por meio de sua histdria e epistemologia.

Deste modo, apesar de ndo nos furtarmos de indicar suas raizes filoséficas, que marcaram mudangas
epistemologicas (POPPER, 1972) na civilizagdo que mais contribuiu na ciéncia que hoje, chamamos no
Ocidente de Matematica. Explicitamos, sobretudo, os modelos matemdticos que ap6iam e indicam a validade
de intimeras propriedades empregadas de modo informal, no passado, pelos gregos.

Note-se que a perspectiva grega € sublinhada por Gundlach (1969, p. 33) quando destaca que o grego em
geral, “vislumbrava a Matemdtica com mais do que Geometria e Aritmética. E desde os seus primeiros
trabalhos, os gregos consideravam os nimeros como um todo, e ndo nos admiramos que eles se esforcaram
em representar nimeros como formas geométricas.”. Ademais, alguns autores registram repercussdes desta
visdo integradora inaugurada pelos helénicos, neste sentido, Aleksandrov (1956, p. 30) sublinha que “na
interacdo entre o aritmético e o geométrico podemos ver que o desenvolvimento da Matemdtica € um
processo conflituoso entre varios elementos contrastantes.”.

Nosso questionamento final se volta para a visdo adquirida e o perfil construido do professor egresso de um
curso de graduacdo. E neste contexto de discussdo, a partir das considera¢des de Gaspar (2003) podemos
extrair questionamentos inquietantes na medida em que sua formagdo com respeito a dimensdo histérica e a
compreensdo da natureza epistemoldgica, envolvida, poderdo atuar como fatores determinantes em seu
“modelo de ensino”.

Apoiamo-nos na perspectiva de Choquet (1963, p. 43) quando adverte que “o principal objetivo é fornecer
aos nossos alunos alguns instrumentos e ensina-los como aplicd-los”; entretanto, no ensino de Matematica o
grande questionamento recai sobre o problema referente a que “metodologia" se apropriar, no periodo de
formagdo académica, que possibilite a concretizacdo e “aplicagdo” adequada dos conceitos matemdticos,
todavia, como indicamos no inicio deste artigo, tal op¢do metodoldgica estard relacionada com os elementos
adquiridos de sua prépria experiéncia como estudante no decurso de sua graduacao.

Como apontamos ao decorrer do texto, o dominio aprofundado de tépicos de Histéria da Matemética
“aplicdveis” ao contexto escolar pode estimular uma prdxis ndo apenas ancorada no método axiomdtico
(CHOQUET, 1963), o qual, nem sempre funciona de modo produtivo ao entendimento do estudante. Mas
também uma “mediacdo pedagdgica” que estimule a visdo conceitual, integradora dos contetidos no interior
da prépria Matematica, semelhantemente ao que foi inaugurada de modo impar, pelos gregos.
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