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RESUMO 

Neste artigo discutem-se aspectos epistemológicos, filosóficos e históricos, relacionados aos números 

figurais, de origem grega, com configurações no plano (2D) e no espaço (3D). Assim, a partir da 
apresentação introdutória de um cenário particular da civilização helênica, registra-se a partir do relato de 
autores (BURTON, 2006; CARAÇA, 1951; POPPER, 1972) que o interesse dos gregos por tais entidades 
conceituais foi bem mais abrangente e sistemático do que preocupações padrões e estanques com a 
Aritmética e a Geometria. Destacam-se também os modelos matemáticos formais que permitem a inspeção e 
a formalização (por uso de Indução Matemática) de propriedades e padrões identificados a partir das 
relações conceituais entre Aritmética e Álgebra. Por fim, destacam-se algumas considerações acerca do 
ensino/aprendizagem e o modo como os conteúdos discutidos no âmbito histórico podem favorecer de modo 
auspicioso à formação do professor de Matemática.  

PALAVRAS-CHAVE: Números Figurais. História da Matemática. Ensino. Epistemologia.  

 

THE HISTORY OF MATHEMATICS: FIGURAL NUMBERS IN 2D AND 3D 

ABSTRACT 

In this article, we discuss epistemological, philosophical and historical aspects related to figural numbers of 

Greek origin, with settings in 2D plan and 3D space. Thus, from the introductory presentation of a 

particular scenario of the Hellenic civilization, the account of some authors is registered (BURTON, 2006; 

CARAÇA, 1951; POPPER, 1972) that the Greek's interest in such conceptual entities was much more 

comprehensive and systematic than the usual and standardized concerns about Arithmetic and 

Geometry. We also highlight the formal mathematical models which allow the inspection and formalization 

(by using Mathematical Induction) of properties and patterns identified from the conceptual relations 

between Arithmetic and Algebra. Finally, we emphasize some considerations about the teaching/learning 

process and how the content discussed in a historical context can auspiciously favor the training of 

Mathematics teachers. 

KEYWORDS: Figural numbers, History of Mathematics, Teaching, Epistemology. 

 

INTRODUÇÃO 

Neste trabalho, discutimos o tópico conhecido como números figurais, de origem grega, recorrentemente 
abordado em livros de Historia da Matemática – (HM). A partir de extensa consulta de autores (BURTON, 
2006; CARAÇA, 1951) reconhecidos, estendemos a discussão envolvendo configurações em 2D e 3D das 
referidas noções matemáticas que, para alguns pensadores (POPPER, 1972) além do caráter de relevância 
histórica, caracterizam e indicam o olhar epistemológico grego com respeito à própria Matemática. 
A relevância do viés filosófico e epistemológico, de acordo com o que apresentamos e propomos neste 
escrito, é fator de aperfeiçoamento na constituição profissional do futuro professor de Matemática, bem 
como o enriquecimento da visão particular deste profissional necessária a ser transmitida aos seus alunos. 
Neste sentido, Gaspar (2003, p. 20) esclarece que:  
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na prática de ensinar matemática, geralmente o professor adota um “modelo de ensino” que 
contém elementos de sua própria experiência como estudante. Com esse modelo, 
acompanham idéias a respeito: do papel do professor (geralmente um expositor) e do aluno 
em sala de aula; do modo como o livro texto pode ser utilizado; dos tipos de problemas 
existentes em uma sala de aula, de atividades a ser desenvolvidas com os alunos e de 
avaliações a ser aplicadas. Na realidade, cada professor possui um modelo ou uma 
caracterização do que é a Matemática e como esta pode ser aprendida pelos alunos. 

Observamos, ainda, que o “modelo de ensino” referenciado pelo autor é condicionado pela própria natureza 
do conteúdo específico do ensino, assim, não podemos descuidar do seu caráter epistemológico. Mais 
adiante, Gaspar (2003) aponta as vantagens do tipo de abordagem que evidencia a dimensão histórica e 
epistemológica do saber matemático. Ademais, acentua a perspectiva do estudante, ao colocar em ênfase 
que: 

além disso, o estudo histórico de um determinado conceito matemático propicia ao 
estudante um contexto em que colocar esse conceito ajudando-o a apreciar sua importância 
para aqueles grupos sociais nos quais o conceito emergiu, sua importância interna à própria 
matemática e a entender mais claramente quando esse conceito é necessário ou não no 
discurso matemático (p. 21).  

Destaca-se também neste trabalho a apresentação de modelos matemáticos, formais, desconhecidos, naquela 
época, dos gregos e, que, em nossos dias, proporcionam a confiabilidade e veracidade de propriedades 
muitas vezes empregadas por uma via intuitiva pela civilização que mais contribuiu para a sistematização 
deste saber científico.  

Por fim, nosso maior propósito é fornecer uma abordagem envolvendo conteúdos de História da Matemática  
- HM “aplicáveis” no contexto escolar, mas com o cuidado de se evitar o caráter meramente episódico, 
figurativo, novelesco ou anedótico dos conteúdos de HM. Assim, o futuro professor poderá conhecer os 
modelos matemáticos explorados no passado e podem ser abordados com amparo histórico e epistemológico.  

OS NÚMEROS FIGURAIS E A FILOSOFIA GREGA 

O vigor, a criatividade e a genialidade de figuras emblemáticas gregas é objeto de reflexão para vários 
autores (POPPER, 1972). Neste sentido, destacamos o exemplo analisado e discutido por Popper (1972, p. 
103) relacionado com a crise do atomismo original grego. Popper defende que “a doutrina filosófica de 
Platão, a chamada teoria das formas ou ideias, não pode ser entendida senão dentro de um contexto 
extrafilosófico – mais especificamente, o contexto da situação-problema da ciência grega.”.  

Popper sublinha o contexto da discussão referente ao problema da descoberta da noção de matéria resultante 
do caráter irracional da raiz quadrada de dois. Popper (1972, p. 104) explica que “parece provável que a 
teoria das formas de Platão esteja intimamente associada, na sua origem, e no seu conteúdo, à teoria 
pitagórica de que todas as coisas são, essencialmente, números. Por outro lado, tal afirmação é difícil de se 
verificar.”(CARAÇA, 1951, p. 72).  

Note-se que Popper (1972) fornece sua perspectiva pessoal, referente à “problemática grega”, apontada no 
parágrafo anterior. Com efeito, Popper menciona que 

[...] ao que parece, o fundador da ordem ou seita pitagórica estava profundamente 
impressionado com duas descobertas: a de que um fenômeno aparentemente qualitativo, 
como a harmonia musical, dependia de razões numéricas - 1: 2 ; 2:3 ; 3:4 ; e a de que o 

ângulo “reto” refletia as razões numéricas 3: 4 :5  ou 5 :12 :13  (os lados de um triângulo 
retângulo). Estas duas descobertas teriam levado Pitágoras à generalização algo fantástica 
de que todas as coisas são, em essência, números ou proporções, de que o número é a razão, 
a essência racional das coisas, da sua natureza real (p. 104). 

Apoiado nestas descobertas e nas ideias que evoluíram a partir deste marco divisamos, no pensamento grego, 
sobretudo no pensamento mais influenciado pelos pitagóricos

1, o tratamento e várias aplicações  no contexto 

                                                      
1 Caraça (1951, p. 68) diz que “é seguro que, a partir do século VI a. C., existiu e exerceu larga influência da Grécia 
uma seita, de objetivos místicos e científicos, denominada escola pitagórica, dela parece ter sido Pitágoras o fundador.”. 
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de situações-problema no contexto da Geometria. Popper (1972, p. 104) destaca que “o tratamento destes 
problemas geométricos se baseavam no chamado gnômon”2, que, de acordo com Kline (1972, p. 31), tem sua 
origem na Babilônia.  

Figura1: Popper (1972, p. 104-105) descreve a noção de gnômon.  

 

Popper (1972, p. 104-105) explica que “se indicarmos um quadrado (figura 1, lado esquerdo) por meio de 
quatro pontos, isso pode ser interpretado como o acréscimo de três pontos a um ponto original, situado no 
lado esquerdo superior.”. Esses três pontos constituem o primeiro gnomon. Em seguida diz, que 
acrescentando o segundo gnomon, com outros cinco pontos, chegaríamos a figura 1, indicada acima (lado 
direito). Mais adiante, conclui que “cada número de sequência de números ímpares 1,3,5,7,......  forma um 
gnomon de um quadrado.” (p. 105). 

Popper (1972, p. 107) extrai reflexões profícuas ao afirmar que “a teoria de Pitágoras, com seus diagramas 
feitos de pontos, contém sem dúvida a sugestão de um atomismo muito primitivo.”. De fato, nestes como em 
outros exemplos de diagramas constituídos de pontos, que os helênicos relacionavam com formas 
geométricas são um indicativo disto. Ademais, as “formas” eram consideradas números, ou “razões’ entre 
números. Por outro lado, qualidades abstratas, como harmonia e a retidão, eram vistas também com números. 
“Desse modo, se chegou à teoria geral de que os números são as essências racionais de todas as coisas.” 
(POPPER, 1972, p. 106). 

Ao decorrer do texto, Popper (1972), além de discutir alguns mais alguns casos e diagramas constituídos de 
pontos relacionados com as formas de Geometria Plana, emprega nomenclaturas particulares, sem explicitar, 
com exatidão, a origem e significado das mesmas. Assim, ele comenta outros diagramas semelhantes ao que 
exibimos inicialmente e fala de números quadrados, números triangulares e números oblongos. Concluímos, 
após esse pequeno interregno filosófico, que, na próxima seção, nos deteremos ao estabelecimento de bases 
formais para estes entes conceituais apontados por Karl Popper.  

OS NUMEROS FIGURAIS GREGOS EM 2D 

O historiador matemático Eves (1969, p. 53) explica que “os antigos gregos faziam a distinção entre o estudo 
das relações conceituais entre os números e a arte prática de contagem.”. O autor recorda que os pitagóricos 
falavam de números que pretensamente possuíam propriedades místicas, como os números perfeitos, 
números deficientes e números abundantes; entretanto, nesta seção, nos deteremos ao estudo dos números 
figurais que, de acordo com Eves (1969, p. 54) se originaram com os primeiros membros da sociedade 
pitagórica. Em essência, os números figurais apresentavam as ligações entre a Aritmética e a Geometria, 
como vemos na figura 2, algumas disposições comentadas por Eves (1969).  

 

 

 

 

                                                      
2 Estrada et al (2000, p. 234) acentua que “o conceito de gnomon foi importante na matemática grega. O termo assumiu 
vários significados ao longo dos tempos e com diferentes autores [...].”.  
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Figura 2: Nomenclatura para os números figurais gregos descritos por Eves (1969, p. 55). 

 

 

 

 

Vale recordar que, nos comentários devidos a Popper (1972) identificamos que o autor não apresenta, como 
objetivo principal, demonstrar as propriedades que surgem a partir das disposições geométricas que 
observamos acima. De fato, o autor emprega o raciocínio indutivo em alguns argumentos, todavia, não aplica 
o princípio da Indução Matemática que constitui um dos Axiomas de Peano (LIMA, 2010, p. 34). Além 
disso, do ponto de vista histórico, os gregos desconheciam o modelo de verificação e demonstração 
matemática baseado na Indução Matemática, sistematizado pelo matemático Giuseppe Peano (1858-1932). 

Feita esta pequena digressão histórica, salientamos que nos resultados seguintes, apesar de intrinsecamente 
vinculados à noção de números figurais, as demonstrações que discutiremos se apoiam num forte princípio 
que exige que “saibamos definir objetos indutivamente.” (LIMA, 2010, p. 35). Para iniciar, observando as 
disposições na figura 2, descrevemos o conjunto {1,3,6,10,......,.....,?,.....} . Note-se que, com o objetivo de 
adicionar um maior índice de rigor relativo aos objetos conceituais, que discutiremos, e proceder à 
“higienização”3 das propriedades matemáticas que apresentaremos doravante, atribuímos as seguintes 
notações para a lista anterior: 1 2 3 41 ; T 3 ; T 6 ; T 10 ; ......T = = = = .(*).  

Os números figurais acima são conhecidos como números triangulares e, de imediato, o primeiro problema 
que se coloca é a descrição de um número triangular de ordem elevada. Outra questão interessante é o modo 
ou o padrão que observamos para a obtenção de um número triangular a partir do seu antecessor. Neste caso, 
notamos que: 1 2 1 3 2 4 31 ; 2 ; T 3 ; T 4T T T T T= = + = + = + . Assim, dado n IN∈ , usando o raciocínio 

indutivo, escrevemos 1T ( 1)n nT n+ = + + , para 1n ≥ (**). Reparamos que Khoshy (2007, p. 40) sugere o 

seguinte diagrama recursivo.  

 

 

 

 

                                                      
3 Choquet (1963, p. 9) recorda que o matemático André Weyl dizia que a aplicação da lógica proporcionava a 
‘higienização’ do matemático e assegurava o rigor.  
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Figura 3: Diagrama da recursividade descrito por Koshy (2007, p. 40). 

 

 

Todavia, esta fórmula ainda apresenta sérios inconvenientes, uma vez que, para calcular o número triangular 

100T , necessitamos saber o valor de 99T . Uma maneira eficiente de superar este problema consiste em 

observar as somas em (*); e notar que: 1

1 2 1 (1 1)
1

2 2
T

⋅ ⋅ +
= = = , 2

3 2 2 3 2 (2 1)
T 1 2 3

2 2 2

⋅ ⋅ ⋅ +
= + = = = = , 

3

6 2 3 4 3 (3 1)
T 1 2 3 6

2 2 2

⋅ ⋅ ⋅ +
= + + = = = = , etc.. Notamos que empregamos apenas as regras axiomáticas 

permissíveis nos conjuntos numéricos. Deste modo, suspeitamos a pertinência da seguinte propriedade, para 

um n IN∈  qualquer: 
( 1)

1 2 3
2n

n n
T n

⋅ +
= + + + ⋅⋅⋅+ = , para verificar a mesma propriedade para todos os 

naturais, definimos o conjunto indutivo 
( 1)

: { |  }
2n

n n
n IN T

⋅ +
ℜ = ∈ =  e reparemos que 1, 2,3∈ℜ ≠ ∅ . O 

passo indutivo requer à verificação de que se 1n n∈ℜ → + ∈ℜ . contudo, escrevemos 

1

( 1) ( 1)( 2) ( 1)(( 1) 1)
1 2 3 ( 1) 1

2 2 2n
Hipótese
indutiva

n n n n n n
T n n n+

⋅ + + + + + +
= + + + ⋅⋅ ⋅ + + + = + + = = .  

Pelo principio de indução matemática, concluímos que 
( 1)

1 : { |  }
2n

n n
n n IN T IN

⋅ +
+ ∈ℜ = ∈ = ∴ℜ = . 

Isto quer dizer, do ponto de vista lógico, que a referida propriedade vale n IN∀ ∈ . No que segue, 
simplificaremos alguns destes argumentos que admitimos como de conhecimento do leitor. Deste modo, 
enunciamos nosso primeiro teorema. 

 1Teorema  O único número triangular primo nT  é o 3, onde 1n ≥ . 

Demonstração: De fato, vimos por indução que 
( 1)

2n

n n
T

+
=  onde 

 é par

n é ímpar

n
n IN


∈ ↔ 


. Se n for par, 

digamos que 2  onde kn k IN= ∈ , segue-se que: 2

2 (2 1)
(2 1)

2k

k k
T k k

+
= = + . Assim, o único caso em 

que temos um número primo ocorre na condição em que 1 ou (2 1) 1 0k k k= + = ↔ =  o que não ocorrer 
segundo nossa definição inicial. 

 Assim, só temos a possibilidade para 2

2(2 1)
1 2 1 3

2
k n T

+
= → = ⋅ ∴ = = . Na outra situação, pode ocorrer 

que 2 1n k= +  é ímpar. Daí, escrevemos: 2 1

(2 1)(2 2)
(2 1)( 1)

2k

k k
T k k

+

+ +
= = + +  e, neste caso, nenhuma 

das expressões pode ser a unidade, ou seja: (2 1) 1 ou ( 1) 1 0k k k+ = + = ↔ = .  

Consultando, mais uma vez, a figura 2, assumimos as seguintes notações para a coleção 
2 2 2 2

1 2 3 4{ , , , ...., ?,...} {1, 4,9,16,....} {1 , 2 ,3 , 4 ,....}= =� � � � . A partir da inspeção destes casos iniciais, 

observamos a propriedade de potências com expoente ‘2’.  
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Por hipótese de indução, escrevemos 2
1 ?n nn += ∴ =� � ; todavia, notamos que cada número quadrado 

(POPPER, 1972, p. 105) pode ser obtido a partir do seu antecessor, da seguinte forma: 

2 3 41 3,  3 6 ; 6 10= + = + = +� � � , e observamos as relações entre os números triangulares com os números 

quadrados da seguinte forma: 5 4 525 10 15 T T= = + = +� .  Notamos que para 1n ≥ , podemos escrever: 
2 2

2
1

( 1) ( 1)

2 2 2 2 2 2 n n

n n n n n n n n
n T T −

⋅ + − ⋅
= + + − = + = + . Por indução matemática, estabelecemos: 

2 2
1 ( 1) ( 1) 1 2 1 2 1 ( 1)n n n

Hipotese
Indutiva

n n n n n n+ = + + + + − = + + = + + = +� � � . 

Figura 4: Koshy (2007, p. 44) descreve a forma recursiva nos números quadrados.  

 

Reparemos na ultima linha, que usamos o fato de que acrescentamos uma linha e uma coluna com a ordem 
acrescida de uma unidade para obter o próximo número quadrado. E como não podemos repetir o elemento, 
retiramos uma unidade no final (figura 4). Com isto, demonstramos basicamente o próximo teorema. 

 2:Teorema (Theon de Smyrna, 100 a. C.) Todo número quadrado é combinação de dois números 
triangulares. 
 
Demonstração: Dado 1n > , escrevemos 2

1n n nn T T −= = +� . Podemos conjecturar esta propriedade a partir 

da figura 4, lado direito.  

 3:Teorema (R. B. Nelsen, 1997) Dado 1n ≥ , temos a relação 2
2 2

1n n n
T T T− + = . 

Demonstração: Observamos as relações 2

2 2
2 2 2 2

1 2 2

2 (2 1)
1 3 10 2 5

2
T T T

⋅ +
+ = + = = ⋅ = =  e 

2 2 2
2 2 2 2 2

2 3 3

90 3 10 3 (3 1)
3 6 9 36 45

2 2 2
T T T

⋅ ⋅ +
+ = + = + = = = = = . Usando a hipótese de indução, 

escrevemos: 2
2 2

1n n n
T T T− + = . Em seguida, analisamos a seguinte expressão: 
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( ) ( )

2 2

2 2

2 22 2 2 2 2 2
1 1 1 1

2 2 2 2

2 2 2 2 2 2 2

1 [ ] 2 2( 1) ( 1)

2 ( 1) 2( 1) ( 1)
[ ] ( 1) [ ] ( 1) ( 1) ( 1) ( 1)

2 2

[ ] ( 1) ( 1) ( 1) [ ] ( 1) ( 1)

n n n n n n n n

n n

n n

T T T n T n T T n T n n T n

n n n n n n
T n n T n n n n n n n n

T n n n n n n T n n n n n

+ − − −+ = + + + + = + + ⋅ + + + + + =

− + +
= + + + + + = + − + + + + + + =

= + − + + + + + = + − + + + +
2

2 2 2
2 2 2 2 2

2 2
2 2 2 2 2 2

2 2
2 2

( 1)

( 1) ( 1)
( 1) ( 1)( 1) [ ( 1) 1] ( 1)( 1)

2 2

( 1 2 ( 1) 1
[ ] ( 1)( 1) [ ] ( 1)( 1) ( 1) [ ] ( 1)

2 2 2

2 2 2 1 1
( 1) [ ] ( 1) [ ]

2 2

n

n n n
n n n n n n n n n

n n n
n n n n n n n n n

n n n n
n n

+ =

+ +
= + − + + + + = ⋅ + − + + + + =

+ + +  
= ⋅ + + + = ⋅ + + + = + ⋅ + + =  

   + + + + +
= + = +  

   
2

2
2

( 1)

( 1) 1
( 1) [ ] [ ]

2 n

n
n T

+

 + +
= + =  

 

 

 
 1:Corolário  Dado 1n ≥ , temos as seguintes relações:  

 
(a) 2 18 1n nT +⋅ + =� (Diophantus de Alexandria, 200 a. C.);  

(b) 1 28 4n nT n−⋅ + =� . 

 

Demonstração: No item (a) temos de imediato que 

2 2
2 1

( 1)
8 1 8 1 4 ( 1) 1 4 4 1 (2 1)

2n n

n n
T n n n n n +

+
⋅ + = ⋅ + = + + = + + = + =� . E no item (b) escrevemos 

2
1 2

( 1)
8 4 8 4 4 ( 1) 4 4 4 4

2n n

n n
T n n n n n n n n−

−
⋅ + = ⋅ + = − + = − + + =� .  

 
Burton (2006, p. 100) discute os seguintes padrões aritméticos: 

3 2 3 3 2 3 3 3 2 3 3 3 3 2
1 2 3 41  ; 1 2 1 8 9  ; 1 2 3 1 8 27 36  ; 1 2 3 4 1 8 27 64 100T T T T= + = + = = + + = + + = = + + + = + + + = =  

 
E observa que, do lado direito das identidades, temos o quadrado de números triangulares. Tal padrão 
possibilita conjeturar que a soma dos ‘n’ cubos de números é igual ao quadrado do n-ésimo número 

triangular o que nos proporciona enunciar o próximo teorema.  
 4:Teorema (Nicomachus, 60 a. C.)Dado 1n ≥ , temos que 3 3 3 3 21 2 3 nn T+ + + ⋅ ⋅ ⋅ + = . 

Demonstração: Para tal, Burton aconselha olhar as seguintes igualdades e somando-as, obtém relações 
interessantes como indicamos abaixo à direita.  
 

[ ] [ ] [ ]

[ ]

3

3

3

3 3 3 3 3

3

3

1 1

3 5 2

7 9 11 3

13 15 17 19 4 1 3 5 7 ( 1) (2 1) 1 2 3

21 23 25 27 29 31 5

...............................................

( 1) 1 ( 1) 3 .... ( 1) (2 1)

n n n n

n n n n n n n n

 =


+ =
 + + =



+ + + = ⇒ + + + +⋅⋅⋅+ − + − = + + +⋅⋅⋅+


+ + + + + =



− + + − + + + − + − =
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Por outro lado, Burton (2006, p. 100) aconselha observar  
 

[ ] [ ] [ ]

[ ]

[ ]

2 2 2

2 2 2 2 2

2

( 1) 1 ( 1) 3 .... ( 1) (2 1) 1 3 (2 1)

1 3 1 1 3 ( 1) 1

( 1)
2 1 3 ( 1) 1

2

n n n n n n n n n n n n n n

n n n n n n n n n n n n

n n
n n n n

     − + + − + + + − + − = − + + − + + ⋅⋅⋅+ − + − =     

         = − + + − + + ⋅⋅⋅+ + − = − + + − + + ⋅⋅⋅ + + − =         

−   = + + − + + ⋅⋅⋅ + + −   

Burton (2006, p. 100) conclui escrevendo 
2

3 3 3 3 2( 1)
1 2 3

2 n

n n
n T

+ 
+ + + ⋅⋅ ⋅ + = =  

.  

 

 5 :Teorema Para n IN∈ , temos 2 2 2 2 2 ( 1)(2 1)
1 2 3 4

6

n n n
n

+ +
+ + + + ⋅⋅⋅ + = . 

Demonstração: Desenvolveremos a ideia de Burton (2006, p. 108) quando explica que “o mesmo resultado 
foi obtido também por Arquimedes (287-212. b. C.)”. Para o seguinte diagrama que envolve a ideia de somas 
os números quadrados que passamos a descrever.  
Com esse objetivo, por meio de uma contagem e completando a figura do lado esquerdo, imaginamos do 

lado direito, a seguintes equivalências numéricas:  ( ) ( ) ( )( )2 2 2 2

    
1 2 3 4 1 3 6 10 1 2 3 4 4 1

alturanúmeros quadrados linhas horizontais base do retangulo
+ + + + + + + = + + + +  

 
 
 

Figura 5: Diagrama explicativo de Burton (2006, p. 100) 
 

 
 
 
 

Em seguida, observa que ( ) ( ) ( )( ) ( ) ( )2 2 2 2 2 2 2 21 2 3 4 1 3 6 10 10 5 1 2 3 4 50 1 3 6 10+ + + + + + + = ∴ + + + = − + + + , 

ou seja, para 4n = , temos ( )2 2 2 2 4 5 9 4 (4 1)(2 4 1)
1 2 3 4 50 20 30

6 6

⋅ ⋅ ⋅ + ⋅ +
+ + + = − = = = . Em seguida, 

sugere um diagrama semelhante para prever o comportamento padrão para a soma de 2 2 2 2 21 2 3 4 5+ + + + , 
e usando o mesmo raciocínio, podemos escrever:  
 

( ) ( ) ( )( )2 2 2 2 2

    

2 2 2 2 2

1 2 3 4 5 1 3 6 10 15 1 2 3 4 5 4 2

5 6 11 5 (5 1) (2 5 1)
1 2 3 4 5 15 6 (1 3 6 10 15) 90 35 55

6 6

alturanúmeros quadrados linhas horizontais base do retangulo
+ + + + + + + + + = + + + + + ∴

⋅ ⋅ ⋅ + ⋅ ⋅ +
+ + + + = ⋅ − + + + + = − = = =
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Figura 6: Diagrama generalizado de Burton (2006). 

 

 

Em seguida, dado n IN∈ , o autor escreve 2 2 2 2 21 2 3 4S n= + + + + ⋅⋅⋅+ . Burton (2006, p. 109) observa 
que as dimensões do retângulo no n-ésimo passo são de (1 2 3 )( 1)n n+ + + ⋅⋅⋅+ + . E que a outra parcela 
pode ser descrita por 

( )
 

1 3 6 10 .... (1 2 .... ) (1) (1 2) (1 2 3) (1 2 3 )
linhas horizontais

n n
 

+ + + + + + + + = + + + + + + ⋅⋅⋅+ + + + ⋅⋅⋅+ 
 

, ou podemos 

escrever ainda: 
1 2 2 3 3 4 ( 1)

2 2 2 2

n n⋅ ⋅ ⋅ + 
+ + + ⋅⋅⋅+ 

 
. Agrupando todos os termos e usando a relação 

generalizada, baseada no diagrama:  
1 2 2 3 3 4 ( 1)

(1 2 3 )( 1)
2 2 2 2

n n
S n n

⋅ ⋅ ⋅ + 
+ + + +⋅⋅⋅+ = + + +⋅⋅⋅+ + = 
 

 

( )
21 2 2 3 3 4 ( 1) ( 1) 1 ( 1)

....... ( 1) 1 2 2 3 3 4 ( 1)
2 2 2 2 2 2 2

n n n n n n
S n S n n

⋅ ⋅ ⋅ + + + 
+ + + + + = ⋅ + ↔ + ⋅ + ⋅ + ⋅ +⋅⋅⋅+ + = 
 

, 

ou ainda, reagrupando os termos desta soma: ( )
21 ( 1)

1 2 2 3 3 4 ( 1)
2 2

n n
S n n

+
+ ⋅ + ⋅ + ⋅ + ⋅⋅ ⋅ + + = ↔  

( )

( )

2

2 2
2 2 2 2 2

2 2

1 ( 1)
1 (1 1) 2 (2 1) 3 (3 1) ( 1)

2 2

1 ( 1) 1 ( 1) ( 1)
1 2 3 4 (1 2 3 )

2 2 2 2 2

( 1) ( 1) 3 ( 1) ( 1) ( 1)(2 ( 1) ) ( 1)(2

2 4 2 2 2 4 4

n n
S n n

n n n n n n
S n n S S

S n n n n S n n n n n n n n n n n
S

+
+ ⋅ + + ⋅ + + ⋅ + +⋅⋅⋅+ + = ↔

+ + + 
↔ + + + + +⋅⋅⋅+ + + + +⋅⋅⋅+ = ↔ + + = 

 

+ + + + + + − + 
↔ + + = ↔ = − = = 

 

1)

4

+

 
 

Finalmente, Burton (2006, p. 103) conclui que 
3 ( 1)(2 1) ( 1)(2 1)

2 4 6

S n n n n n n
S

+ + + +
= ↔ = .  

 
Nossa próxima discussão envolve as configurações da figura abaixo que caracterizam os números que não 
representavam quadrados perfeitos, chamados oblongos (KLINE, 1972, p. 30) ou números retangulares. A 
partir delas, escrevemos a adotamos a seguinte notação: 1 2 32 1 2 ; Ob 6 2 3 ; Ob 12 3 4 ; etc.Ob = = ⋅ = = ⋅ = = ⋅ .  

 
Conjecturamos que, prosseguindo com o mesmo raciocínio indutivo, para n IN∈  e 1n ≥ , escrevemos o n-

ésimo número oblongo por ( 1)nOb n n= ⋅ +  (figura 6).  
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Figura 7: Números oblongos (elaboração própria).  

 

 

Kline (1972, p. 31-32) explica uma possível regra para a obtenção dos demais números figurais.  

 

Figura 8: Formas de obtenção dos demais números figurais descritas por Kline (1972, p. 32). 

 

Vamos consultar mais uma vez a figura 2 e descrever os números pentagonais (EVES, 1969, p. 55) pelo 

conjunto 1 2 3 4{1,5,12,22,....} { , , , ,.....}P P P P= . Mas reparemos que 1

1 (3 1 1)
1

2
P

⋅ ⋅ −
= = , 

2

2 (3 2 1)
5 1 4 1 (3 2 2)

2
P

⋅ ⋅ −
= = + = + ⋅ − = , 3

3 (3 3 1)
12 1 4 7 1 4 (3 3 2)

2
P

⋅ ⋅ −
= = + + = + + ⋅ − = , 4 22 1 4 7 (3 4 2)P = = + + + ⋅ − . Por 

indução, conjecturamos que 1 4 7 (3 2)nP n= + + + ⋅⋅⋅+ ⋅ − . No que segue, estabelecemos por indução 

matemática que: 
(3 1)

1 4 7 (3 2)
2n

n n
P n

⋅ −
= + + + ⋅⋅ ⋅ + ⋅ − = . Por outro lado, Eves (1969, p. 56) observa, 

ainda, que 1

(3 1) ( 1)
3 3

2 2n n

n n n n
P n n T −

⋅ − − ⋅ 
= = + = + ⋅  

. Que verifica a relação com os números 

triangulares e que pode ser conjecturada a partir do seguinte diagrama.  
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Figura 9: Decomposição de um número pentagonal, sugerido por Eves (1969, p. 56) e suas relações com os 
números triangulares e quadrados observados em Koshy (2007, p. 47). 

 
 
 
Observando o diagrama acima, do lado direito, escrevemos: 

1 2 2 2 3 3 3 4 4 1 1 ;  ;  ; ....; n n nT P T P T P T P+ ++ = + = + = + =� � � � . Com base nestes resultados, demonstramos 

facilmente dois teoremas.  
 

 6:Teorema  O único número pentagonal primo é o 5. 

Demonstração: Supondo que n é par, digamos que 
(3 1)

2
2n

n n
n k Pent

−
= ∴ =  para 1n ≥ . Assim, teremos 

que 2

 1 1 (6 1) 52 (3 2 1)
(6 1)

 k>1 não pode ser primo!2k

se kk k
Pent k k

se

= → ⋅ − =⋅ −
= = − ↔ 


.  

Agora analisemos o caso em que 2 1n k= + , observando que  

2 1

(2 1)(3(2 1) 1) (2 1)(6 2)
(2 1)(3 1)

2 2k

k k k k
Pent k k+

+ + − + +
∴ = = = + +  que do mesmo modo não pode 

ser primo. 
 

 7:Teorema  Qualquer número pentagonal é um terço de um número triangular.  

Demonstração: Já vimos que 
(3 1)

2n

n n
Pent

−
= . Assim, fazendo 

1
1 1 ( 1) 133 1

3 2 3 2 3 m

m
m

m m m
m n n T

+
⋅

+ +
= − ↔ = ↔ = × = × .  

 
Nossos próximos números figurais gregos a ser discutidos são chamados de números hexagonais. Os autores 
Conway & Guy (1969) fornecem a seguinte lista numérica 

1 2 3 4{1,6,15,28,65,.....} { , , , ,.....}Hex Hex Hex Hex= .  

 A partir dela, observamos que 

1 2 3 41 1 (2 1 1) , 6 2 (2 2 1),  15 3 (2 3 1);  26 4 (2 4 1),....Hex Hex Hex Hex= = ⋅ ⋅ − = = ⋅ ⋅ − = = ⋅ ⋅ − = = ⋅ ⋅ − .  

 
Por outro lado, para verificar que n1 : { |  Hex (2 1)}n n IN n n+ ∈ℜ = ∈ = ⋅ − , empregamos as relações: 

2 2

1 1 2 2 1 3 3 2 1

2

(3 1) ( 1) 3
 ;  ; ;....;  

2 2 2

2 (2 1)

n n n

n n n n n n n n
Hex T Hex P T Hex P T Hex P T

n n n n

−

− − − + −
= = + = + = + = + = =

= − = ⋅ −  
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Figura 10: Os números hexagonais descritos por Conway & Guy (1969, p. 40).  

 
 

 8 :Teorema Todo número hexagonal é um número triangular.  
 
Demonstração: De fato, sabemos que 1(2 1) 4n nHex n n n T −= − = + ⋅ . Assim, segue que 

2 2 1

1 1 1

( 1) 3 ( 1) 4 2 (2 1)(2 1 1)
( ) 3 3

2 2 2 2
( 1)

 (triangular de ordem m) onde m=2n 1
2

m n

n n n n

m

n n n n n n n n
n T T T T

m m
T

= −

− − −

− − − − − +
= + + ⋅ = + ⋅ = + = = =

+
= = −

 

 

Com base nas propriedades discutidas até agora, enunciamos as seguintes propriedades. 

:Proposição Com relação aos números figurais, temos as seguintes relações. 

a) 13n nP n T −= + ⋅  b) 14n nHex T n−= ⋅ +    

Demonstração: No item (a) sabemos que 
2 2

1

(3 1) 3 2 3 3 ( 1)
3 3

2 2 2 2n n

n n n n n n n n n
Pent n n T −

− − + − −
= = = = + ⋅ = + ⋅ . No item (b) Sabemos que 

2 2

1

2 (2 1) 4 2 4 2 4 4 ( 1) 2
(2 1) 4

2 2 2 2 2n n

n n n n n n n n n n
Hex n n T n−

− − + − ⋅ −
= − = = = = + = ⋅ + .  

Para concluir esta seção, Conway & Guy (1996, p. 39) descrevem uma maneira analítica engenhosa de 

obtermos os números heptagonais, octogonais, etc...a partir das relações: 

1

1

1

1

1

1

1

2

3

4

5

6

7

....................

n n

n n

n n

n n

n n

n n

n n

n T T

n T

n T P

n T Hex

n T Hept

n T Oct

n T Non

−

−

−

−

−

−

−

+ =

+ ⋅ =

+ ⋅ =

+ ⋅ =

+ ⋅ =

+ ⋅ =

+ ⋅ =

�

.  

Podemos comparar agora a figura 6 com estas relações acima. Ademais, Hindin (1978, p. 561) fornece a 

seguinte fórmula geral 
[ ]( 2) 4

2
r

n

n r n r
p

− − +
= , onde 1n ≥  e 3r ≥  descreve o n-ésimo número figural de 
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r lados. Tal descrição proporciona uma descrição, de imediato, para qualquer um dos números que 
discutimos até agora, por meio desse modelo generalizado.  

OS NUMEROS FIGURAIS EM 3D 

Popper (1972, p. 106) menciona sem maiores explicações que o raciocínio grego aplicado às formas 
geométricas planas, foi estendido aos sólidos, apesar das dificuldades de identificar as configurações em 3D 
que sugerem a discussão dos números piramidais, ou mais especificamente, números piramidais 

triangulares, números piramidais quadrados, números piramidais pentagonais (KOSHY, 2007).  

Estrada el al (2000, p. 232) faz um comentário interessante quando observa que 

a busca de esquemas retangulares para representar os números terá conduzido ao conceito 
de divisibilidade. Os números primos são os que apenas admitem a representação 
retangular, trivial (todos dispostos numa só fila). Pelo contrário, os números que admitem 
uma ou mais representações retangulares não triviais diziam-se números planos (depois 
ditos números compostos). Daí é fácil passar também à consideração dos números com 
representação tridimensional não trivial, que se chamaram números sólidos.  

Na figura abaixo exibimos os primeiros números sólidos.  

 

Figura 10: Os números piramidais discutidos por Koshy (2007).  

 

Os primeiros são obtidos tomando-se sucessivamente os correspondentes números figurais em 2D. Para 
tanto, Koshy (2007, p. 49) apresenta os números piramidais. Os mesmos são constituídos a partir dos 
números triangulares da seguinte forma: 1 2 3 4

3 3 1 2 3 1 2 3 31,  +T 1 3 4,  +T 1 3 6 10, 20Pir Pir T Pir T T Pir= = = + = = + = + + = = . 

De um modo geral, determinam-se 3
1

n
n

i

i

Pir T
=

=∑ .   

Por outro lado, já inferimos há pouco que um número triangular por ser descrito por 
( 1)

2i

i i
T

+
= , assim, 

substituindo, decorre que: 3
1 1

( 1)

2

n n
n

i

i i

i i
Pir T

= =

+
= =∑ ∑ . Por outro lado, podemos mostrar por indução 

matemática que:  

 
1

2( 1) ( 1)( 2) ( 2)( 1) ( 1)! ( 2)! ( 2)!

   32 6 6( 1)! 3!( 1)! 3!( 2 3)!

n

Indução
i

ni i n n n n n n n n n

n n n=

+ + + + + + − + +
= = = = =  

− − + −  
∑ .  

Consequentemente, podemos escrever daqui por diante, o i-ésimo número piramidal de base triangular 

( )3
iPir  como um elemento presente no triângulo de Pascal. Na figura abaixo, Koshy (2007) descreve a 

maneira recorrente de obtenção dos números piramidais de base triângular, para ordens mais elevadas.  
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Figura 11: Modo recorrente de se obter os números piramidais segundo Koshy (2007). 

 

 

Podemos inferir a partir da tabela acima que: 3 3
5 4 535 20 15 Pir Pir T= + ∴ = + . De modo geral, por indução 

matemática, escrevemos 3 3 3
1 1

( 1)

2n n n n

n n
Pir Pir T Pir− −

+
= + = + , para 1n ≥ . Com o mesmo raciocínio, a 

partir dos números figurais no plano, definimos os números piramidais de base quadrada por: 
1 2 3 4
4 4 4 41,  5,  14,  30Pir Pir Pir Pir= = = = . Na sequência, Koshy (2007, p. 50) fornece os números piramidais 

de base quadrada em suas disposições espaciais.  

 

Na tabela abaixo vemos as indicações de Koshy (2007, p. 51) para obter seus valores numéricos 

correspondentes. De fato, vemos que 4 4
155 30 25 n n nPir Pir −= + ∴ = +� . Mais ainda, podemos escrever um 

número piramidal qualquer, de base quadrada, por 4 2

1 1

( 1)(2 1)

6

n n

n i i
Indução

i i

n n n
Pir i

= =

+ +
= = =∑ ∑� . 

Figura 12: Obtenção dos números piramidais a partir dos números quadrados segundo Koshy (2007). 

 
 
 
Vamos definir, agora, os números piramidais de base pentagonal. Denotamos e definimos a partir da 
sequência dos números pentagonais {1,5,12, 22,....}; estes entes por: 

1 2 3 4 5
5 5 5 5 51,  6 1 5,  18 6 12,  40 18 22, 75 40 35Pir Pir Pir Pir Pir= = = + = = + = = + = = + . Na tabela abaixo 

fornecida por Koshy (2007, p. 51) estabelecemos 5 5 5
1 1

(3 1)

2n n n n

n n
Pir Pir Pent Pir− −

−
= + = + , para 1n ≥ .  

 

Figura 13: Modo recorrente de se obter os números piramidais segundo Koshy (2007) 
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Por fim, Koshy (2007, p. 52) descreve a forma de obtenção dos números piramidais hexagonais ou de base 
hexagonal. A partir da tabela, observamos as relações 

1 2 3 4 5
6 6 6 6 61 ; 7 1 6 ; 22 15 7 ; 50 28 22 ; 95 45 50Pir Pir Pir Pir Pir= = = + = = + = = + = = + . Partindo 

deste diagrama, podemos escrever 6 6 6
1 1 (2 1)n n n nPir Pir Hex Pir n n− −= + = + ⋅ − , para 1n ≥ . 

Figura 14: Obtenção dos números piramidais a partir dos números hexagonais segundo Koshy (2007). 

 

 

CONSIDERAÇÕES FINAIS 

Discutimos nas seções passadas a noção de números figurais que se constitui um tópico recorrentemente 
abordado por vários autores de artigos e livros de Historia da Matemática (ALVES, BORGES NETO & 
MACHADO, 2008; ALVES, 2011; ALVES & BORGES NETO, 2012; BURTON, 2006; ESTRADA et al. 
2000; FAUVEL & MAANEN, 2002; FOSSA, 2001; KLINE, 1972) de qualidade reconhecida; entretanto, ao 
decorrer do desenvolvimento do texto, dentre os tipos de abordagens observadas, assumimos aquela que 
assume a relevância do estudo da Matemática por meio de sua história e epistemologia.  

Deste modo, apesar de não nos furtarmos de indicar suas raízes filosóficas, que marcaram mudanças 

epistemológicas (POPPER, 1972) na civilização que mais contribuiu na ciência que hoje, chamamos no 
Ocidente de Matemática. Explicitamos, sobretudo, os modelos matemáticos que apóiam e indicam a validade 
de inúmeras propriedades empregadas de modo informal, no passado, pelos gregos. 

Note-se que a perspectiva grega é sublinhada por Gundlach (1969, p. 33) quando destaca que o grego em 
geral, “vislumbrava a Matemática com mais do que Geometria e Aritmética. E desde os seus primeiros 
trabalhos, os gregos consideravam os números como um todo, e não nos admiramos que eles se esforçaram 
em representar números como formas geométricas.”. Ademais, alguns autores registram repercussões desta 
visão integradora inaugurada pelos helênicos, neste sentido, Aleksandrov (1956, p. 30) sublinha que “na 
interação entre o aritmético e o geométrico podemos ver que o desenvolvimento da Matemática é um 
processo conflituoso entre vários elementos contrastantes.”.  

Nosso questionamento final se volta para a visão adquirida e o perfil construído do professor egresso de um 
curso de graduação. E neste contexto de discussão, a partir das considerações de Gaspar (2003) podemos 
extrair questionamentos inquietantes na medida em que sua formação com respeito à dimensão histórica e a 
compreensão da natureza epistemológica, envolvida, poderão atuar como fatores determinantes em seu 
“modelo de ensino”.  

Apoiamo-nos na perspectiva de Choquet (1963, p. 43) quando adverte que “o principal objetivo é fornecer 
aos nossos alunos alguns instrumentos e ensiná-los como aplicá-los”; entretanto, no ensino de Matemática o 
grande questionamento recai sobre o problema referente à que “metodologia" se apropriar, no período de 
formação acadêmica, que possibilite a concretização e “aplicação” adequada dos conceitos matemáticos, 
todavia, como indicamos no início deste artigo, tal opção metodológica estará relacionada com os elementos 
adquiridos de sua própria experiência como estudante no decurso de sua graduação.  

Como apontamos ao decorrer do texto, o domínio aprofundado de tópicos de História da Matemática 
“aplicáveis” ao contexto escolar pode estimular uma práxis não apenas ancorada no método axiomático 
(CHOQUET, 1963), o qual, nem sempre funciona de modo produtivo ao entendimento do estudante. Mas 
também  uma “mediação pedagógica” que estimule a visão conceitual, integradora dos conteúdos no interior 
da própria Matemática, semelhantemente ao que foi inaugurada de modo ímpar, pelos gregos.  
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