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Resumo. As condições de resistência à derrapagem de pavimentos aeroportuários são fatores
importantes para a manutenção da segurança operacional de pousos e decolagens e fundamen-
tais para o gerenciamento de riscos em aeroportos. Essa resistência pode ser incrementada por
meio da caracterização do revestimento das pistas, que ficam em contato direto com os pneus
das aeronaves, medidas por meio do coeficiente de atrito e da macrotextura. O objetivo deste
artigo é obter um modelo de classificação da segurança operacional de pistas de pouso e deco-
lagem (PPD) com revestimento em Concreto Asfáltico (CA) e Camada Porosa de Atrito (CPA).
Foram utilizadas variáveis como coeficiente de atrito, profundidade da macrotextura, remoção
do acúmulo de borracha, localização e terço da PPD e tipo de revestimento asfáltico, oriun-
dos de relatórios disponibilizados pela Autoridade de Aviação Civil entre 2014 e 2018. Foram
empregadas técnicas de machine learning, especificamente uma rede neural do tipo Multilayer
Perceptron. Os resultados apresentaram uma taxa de acerto de 99,5% no teste adicional e de-
monstraram que o modelo gerado é capaz de classificar adequadamente a segurança operacional
das PPD. Dessa forma, espera-se contribuir para os Sistemas de Gerência de Pavimentos Aero-
portuários, ao fornecer uma ferramenta para aprimorar a eficiência e segurança das operações
aeroportuárias.

Palavras-chave: coeficiente de atrito; macrotextura; redes neurais MLP.

CLASSIFICATION OF THE OPERATIONAL SAFETY OF
RUNWAYS USING MULTILAYER PERCEPTRON

NETWORKS
Abstract. The skid resistance conditions of airport pavements are important factors for main-
taining the operational safety of landings and takeoffs and are fundamental for airport risk
management. This resistance can be increased by characterizing the runway coating in direct
contact with aircraft tires, measured through the coefficient of friction and macrotexture. The
objective of this article is to obtain a classification model for the operational safety of runways
(PPD) with Asphalt Concrete (CA) and Porous Friction Layer (CPA) coatings. Variables such
as coefficient of friction, depth of the macrotexture, removal of rubber accumulation, location
and a third of the PPD, and type of asphalt coating were used, originating from reports made
available by the Civil Aviation Authority between 2014 and 2018. Machine learning techniques
were explicitly used a Multilayer Perceptron neural network. The results present an accuracy
rate of 99.5% in the additional test and demonstrate that the generated model can adequately
classify the operational safety of PPDs. This is expected to contribute to Airport Pavement
Management Systems by providing a tool to improve the efficiency and safety of airport opera-
tions.

Keywords: friction coeficiente; macrotexture; MLP neural networks.
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1 INTRODUÇÃO

De acordo com ANAC 2021, 22,5% dos acidentes aéreos registrados entre os anos de 2016 e 2020, no Brasil,
estão relacionados à excursão em pista, que ocorre quando uma aeronave se afasta das extremidades ou da lateral
da pista durante as fases de pouso ou decolagem. Este tipo de acidente está relacionado, entre outros fatores, à
qualidade do revestimento da pista de pouso e decolagem (PPD). Em vista disso, manter as condições adequadas
do pavimento é fundamental para a segurança das operações aeroportuárias.

Em relação à segurança operacional, a condição a ser observada é a resistência à derrapagem, que pode ser
medida por meio do coeficiente de atrito e da profundidade da macrotextura. O coeficiente de atrito é definido
como a relação entre a força tangencial entre os pneus da aeronave e a superfície do pavimento, que os mantém
em um movimento relativo uniforme, e a força perpendicular que as mantêm em contato. A macrotextura é um
tipo de textura de superfície e está relacionada ao ligante que compõe o revestimento asfáltico, e, principalmente,
aos agregados e ao espaço entre suas partículas da mistura asfáltica ICAO 2002. Os operadores de aeródromos
devem estabelecer um Sistema de Gerência de Pavimentos Aeroportuário (SGPA) para gerenciamento do risco que
atendam aos limites mínimos desses parâmetros [ANAC 2023].

Kumar et al. 2023 desenvolveram um estudo sobre os métodos de mensuração e modelagem da resistência à
derrapagem em países em desenvolvimento, comparando testes de campo e de laboratório. Os fatores que mais
influenciam na resistência à derrapagem são a presença de água, com ocorrência de hidroplanagem, aderência
pneu-pavimento, temperatura e textura da superfície. O estudo ainda sugere que devem ser desenvolvidos modelos
de resistência à derrapagem mais confiáveis, usando métodos computacionais como as Redes Neurais Artificiais
(RNA).

O tipo de revestimento asfáltico utilizado também é um fator que influencia na resistência à derrapagem de PPD.
Segundo Aps 2006, as comparações entre os coeficientes de atrito medido em diferentes revestimentos asfálticos,
como a Camada Porosa de Atrito (CPA), o Concreto Asfalto (CA) e o Pré-Misturado a Frio (PMF) mostraram que,
em geral, a CPA apresenta os maiores resultados de coeficiente de atrito, enquanto o CA foi o revestimento que
apresentou os menores valores.

Outro fator que influencia na resistência à derrapagem da PPD é a remoção do acúmulo de borracha do revesti-
mento. Sales et al.(2021) analisaram a efetividade da remoção de borracha em PPD por meio de testes de hipóteses
com amostras pareadas de coeficiente de atrito e macrotextura. Os resultados mostraram que a frequência de
execução da remoção de borracha pode ser considerada eficiente para à segurança de pousos e decolagens.

Desse modo, a caracterização dos parâmetros relacionados à resistência à derrapagem da PPD pode auxiliar os
operadores aeroportuários e as autoridades de aviação civil na tomada de decisão quanto à segurança operacional
Chen e Li 2016. Diante do exposto, o objetivo deste artigo é obter um modelo de classificação da segurança
operacional de PPD usando uma RNA do tipo Multilayer Perceptron, considerando dois tipos de revestimento
asfáltico, a CPA e o CA.

2 REFERENCIAL TEÓRICO

A resistência à derrapagem de uma PPD se deteriora devido a fatores como desgaste mecânico, polimento da
textura do pavimento provocada pelos pneus das aeronaves e presença de contaminantes, como o acúmulo de
borracha, além do tipo de revestimento utilizado FAA 2007. Dessa forma, controlar os parâmetros relacionados à
resistência à derrapagem e realizar os procedimentos de manutenção, como a remoção de borracha, é fundamental
para a segurança de pousos e decolagens.

Mota, Oliveira e Aguiar 2016 analisaram as condições físicas de pavimentos aeroportuários e buscaram priori-
zar aquelas que tivessem maior influência sobre a segurança operacional, por meio de consulta a profissionais da
área. Os resultados mostraram que o coeficiente de atrito e a macrotextura possuem uma influência de 48% sobre
a segurança das operações, devendo ter prioridade nas atividades de manutenção e reabilitação (M&R), seguidas
pelas condições funcionais e estruturais do pavimento.

Nesse contexto, a deterioração do coeficiente de atrito na superfície do revestimento é um fator crítico para a
segurança das operações aeroportuárias, especialmente em presença de água. Com o objetivo de estudar os efeitos
dessa deterioração, Zhu et al. (2021) avaliaram três tipos de revestimentos asfálticos, a saber, CPA, CA e Stone
Mastic Asphalt (SMA). Como resultado, observou-se que o coeficiente de atrito diminui consideravelmente nos
três tipos de pavimentos analisados, a partir de uma taxa de desgaste igual a 30.
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O operador de aeródromo deve mensurar o coeficiente de atrito com frequência regulamentada em ANAC 2020,
a fim de mantê-lo em condições de segurança operacional adequadas. Quando o valor médio do coeficiente de atrito
está abaixo do valor mínimo, ações de manutenção devem ser tomadas, além de investigações sobre as causas dos
valores baixos [ANAC 2020].

Outro fator importante para a segurança operacional das PPD é a profundidade da macrotextura, determinada
por meio do ensaio da mancha de areia ANAC 2020. A profundidade média da macrotextura para a PPD deve
permanecer acima de 0,60 mm. No entanto, essa classificação é diferente para revestimentos constituídos de CPA,
cuja profundidade média da macrotextura deve ser no mínimo 1,20 mm, com a classificação de textura Muito
Aberta [ANAC 2023]. No caso de valores inferiores a 0,60 mm, o operador de aeródromo deve informar o órgão
fiscalizador sobre quais ações serão tomadas para atender à regulamentação e garantir a segurança das operações.

Maia, Oliveira e Silva 2023 analisaram dados de coeficiente de atrito e macrotextura de três PPD brasileiras
entre 2015 e 2021. Os dados de coeficiente de atrito tiveram maior homogeneidade, com menores coeficientes de
variação, em relação à macrotextura, fato que pode estar relacionado à forma de execução do ensaio utilizado para
a obtenção da macrotextura.

Maia et al. 2023 analisaram as condições de resistência à derrapagem de PPD, antes e após processo de reabi-
litação, a fim de verificar o efeito dessa intervenção nos parâmetros de coeficiente de atrito e macrotextura. Após
a obra de reabilitação, o coeficiente de atrito apresentou um aumento, enquanto a macrotextura não apresentou
melhores condições, apesar de sua conformidade com os limites estabelecidos em ANAC 2023. Ainda, os auto-
res identificaram um comportamento cíclico no coeficiente de atrito e uma diminuição ao longo do tempo para a
macrotextura.

Três PPD brasileiras com revestimento em CA, CPA e com presença de grooving, foram avaliadas por Sales
et al. (2022) com o objetivo de verificar a existência de correlação entre a remoção de acúmulo de borracha e
a melhoria das condições de resistência à derrapagem. Observou-se que a remoção do acúmulo de borracha é
um processo de manutenção eficiente no pavimento, pois possibilita que os níveis mínimos exigidos pelos órgãos
regulamentadores para a macrotextura e o coeficiente de atrito sejam mantidos. Entretanto, o processo não garante
aumentos significativos a longo prazo, não devendo ser a única ferramenta de manutenção das PPD.

Zheng et al. (2018) estudaram as características que afetam a resistência à derrapagem. Foram analisados
três tipos de revestimento asfáltico, CPA, CA e SMA. A resistência à derrapagem diminui com o aumento da
velocidade em todas as condições. No entanto, foi observado que o pavimento de CPA tem uma maior aderência
mesmo na presença de película de água e em condições com altas velocidades. O pavimento de CA apresentou a
pior condição, com redução de 15,4% da resistência em um evento de hidroplanagem, enquanto o SMA cerca de
12% e a CPA 10%.

As relações existentes entre a resistência à derrapagem e o conforto ao rolamento em PPD foram estudadas por
Oliveira et al. (2016). Foram utilizados dados de macrotextura, coeficiente de atrito e International Roughness In-
dex (IRI). Os autores verificaram que em alguns trechos da PPD, sobretudo no segmento central, o comportamento
entre os parâmetros analisados apresenta tendência divergente.

As Redes Neurais Artificiais (RNA) são algoritmos que utilizam simulações matemáticas de neurônios bioló-
gicos para processar informações e prever padrões (Quariguasi et al., 2019) Uma RNA é composta por camadas de
elementos de processamento paralelo (neurônios). Entre uma camada de entrada e uma de saída podem existir uma
ou mais camadas intermediárias. Os neurônios dessas camadas estão conectados aos neurônios de uma camada
vizinha por fatores de ponderação, também chamados de pesos (W) e bias (b), ajustados durante o processo de
treinamento da rede.

Para o correto funcionamento da RNA é necessário um componente não linear, chamado de função de ati-
vação. Dentre as funções mais comuns, tem-se a linear, a sigmoide, a tangente hiperbólica (TANH) e a linear
retificada (ReLU). Em relação ao aprendizado da rede, elas podem ser classificadas como supervisionadas ou não
supervisionadas (Quariguasi et al., 2019).

Segundo Géron 2017, dentre os tipos de RNA mais utilizadas, destaca-se o Multilayer Perceptron (MLP).
Conforme Gajewski e Sadowski (2014), a rede MLP possui um algoritmo de aprendizado relativamente simples e
eficaz. Ela é capaz de aproximar mapeamentos complexos e amplamente aplicada em problemas de classificação e
previsão. Além disso, o MLP possui um tempo de resposta curto, o que permite a sua aplicação em tarefas em que
a resposta em tempo real é necessária.

A rede MLP utiliza um algoritmo de retropropagação (backpropagation), que faz uma previsão do vetor alvo,
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verifica o erro e segue através de cada camada em sentido reverso para medir a contribuição do erro de cada
conexão. Com isso, é possível ajustar os pesos das conexões e diminuir o erro, este denominado Gradiente Des-
cendente [Géron 2017].

No caso dos modelos de classificação, é possível avaliar a sua qualidade por meio de diferentes métricas, como
a Receiver Operating Characteristic Curve (ROC), que demonstra o desempenho de um modelo de classificação
binária. Para simplificar a análise da curva ROC pode ser usada a Area Under the ROC Curve (AUC), parâmetro
que varia de 0 até 1 e o limiar entre classes é 0,5. Quanto maior o AUC, melhor (Hossin; Sulaiman, 2015).

Outras métricas que podem ser utilizadas são a matriz de confusão e o Mean Squared Error (MSE). A matriz
de confusão é uma tabela que permite a visualização do desempenho de um algoritmo de classificação ao interpor
os dados reais e os valores preditos pelo modelo Franceschi 2019. O MSE é uma métrica comumente usada para
verificar a acurácia de modelos [Beuren e Gerchman 2016].

Modelos de previsão foram desenvolvidos por Ribeiro e Oliveira (2023) utilizando redes MLP para o coeficiente
de atrito medido a 3 e a 6 metros do eixo de PPD por meio de diferentes tipos de equipamento. O objetivo foi
auxiliar os operadores de aeródromos quanto à garantia da segurança operacional, além de verificar a influência do
grooving no desempenho do coeficiente de atrito. Os modelos desenvolvidos apresentaram resultados satisfatórios
com R2 de aproximadamente 70%.

Quariguasi et al. (2021) desenvolveram um modelo de previsão do coeficiente de atrito medido em uma PPD,
com o uso de redes MLP. A pesquisa utilizou o coeficiente de atrito, a remoção do acúmulo de borracha da pista,
o número de pousos e descolagens, a umidade relativa e a idade do revestimento. O modelo resultou em um R2 de
77,5%.

Devido à deficiência de métodos de identificação de trincas em pavimentos rodoviários, Praticò et al. (2020) de-
senvolveram um algoritmo de aprendizagem supervisionada para a identificação e classificação dessas trincas. Di-
ferentes classificadores de machine learning foram utilizados, como o MLP, a Rede Neural Convolucional (RNC),
o Random Forest Classifier (RFC) e o Support Vector Classifier (SVC). O MLP e a RNC foram capazes de classi-
ficar conjuntos de dados com precisões que variaram de 83% a 95,4%. O RFC apresentou precisão de 91,0% e o
SVC 99,1%.

Niu et al. 2020 desenvolveram uma estimativa do coeficiente de atrito de PPD com base na junção de infor-
mações de vários sensores e na correlação com um modelo de coeficiente de atrito. Foram utilizados sensores
acústicos, ópticos, de banda de rodagem e outros sensores físicos para medir parâmetros relacionados ao atrito e
correlaciona-los por meio de uma RNA Os modelos desenvolvidos incluem o Índice Internacional de Atrito da
Pista (IRFI), o Índice de Atrito da Pista do Canadá (CRFI). O modelo gerado obteve resultado satisfatório com R²
superior a 80%.

Assis et al. 2016 desenvolveram modelos de previsão da condição de pavimentos aeroportuários com uso
de RNA e Função de Base Radial. As análises foram realizadas considerando-se três escalas de condição do
pavimento, contendo 7, 5 e 3 categorias. O estudo utilizou como variáveis a Severidade, Densidade do Defeito,
Valor Deduzido e o Índice de Condição do Pavimento, além das variáveis categóricas Seção, Severidade e Defeito.
Obteve-se uma taxa de acerto variando de 66% e 98% e os melhores resultados foram obtidos com a escala com
três categorias (Condição Boa, Regular ou Ruim).

Três abordagens diferentes para a classificação de defeitos em pavimentos asfálticos foram comparadas por
Rababaah et al. (2005), com uma abordagem composta de pré-processamento de imagens, detecção, representação
e classificação de trincas. Os algoritmos utilizados foram o genetic algorithms, o MLP e o selforganizing maps. A
técnica mais efetiva foi o MLP, apresentando uma precisão de 98,6%.

3 MÉTODO

Para a realização desta pesquisa, foram utilizados dados obtidos por meio de relatórios técnicos de duas PPD
brasileiras (2014 a 2018), fornecidos pela Agência Nacional de Aviação Civil (ANAC). As PPD estudadas possuem
revestimento asfáltico, sendo uma em Concreto Asfáltico (CA) e a outra com Camada Porosa de Atrito (CPA).

Para o desenvolvimento das etapas metodológicas, foi utilizado o software MatLab R2023b em sua versão aca-
dêmica, com licença obtida por meio da Universidade Federal do Ceará (UFC). Também foi utilizado o aplicativo
Jupyter Notebook, compatível com Python 3.10, cuja licença é aberta. Para organização dos dados foi utilizado o
software Microsoft Excel®.
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Foram analisados 42 relatórios de profundidade da macrotextura e 76 relatórios de coeficiente de atrito para as
duas PPD, totalizando 1238 amostras. Em relação ao coeficiente de atrito, as medições foram realizadas com o
equipamento Grip Tester a uma velocidade de 65 km/h a 3 m e 6 m do eixo da PPD. As medições da macrotextura
foram realizadas conforme ANAC 2020. Esses parâmetros foram analisados por meio de estatística descritiva.
Para a classificação da segurança operacional utilizou-se a regra descrita na Tabela 1.

Tabela 1: Regra para a classificação da segurança operacional da PPD.

Tipo de Regra Classificação da Segurança
revestimento Operacional

CPA
Profundidade da macrotextura menor que 1,20 mm
ou coeficiente de atrito menor que 0,65 Não adequada
Profundidade da macrotextura maior do que 1,20 mm
e coeficiente de atrito maior do que 0,65 Adequada

CA
Profundidade da macrotextura menor que 0,80 mm
ou coeficiente de atrito menor que 0,70 Não adequada
Profundidade da macrotextura maior que 0,80 mm
e coeficiente de atrito maior que 0,70 Adequada

Para entender a natureza do problema e das variáveis utilizadas foi realizada uma análise exploratória e
observou-se que o fenômeno estudado é não linear e pode ser linearmente separável. Além disso, a segurança
operacional de uma PPD é afetada por vários fatores, como o coeficiente de atrito e a profundidade da macrotex-
tura; a remoção de borracha; o tipo de revestimento asfáltico; a localização na PDD; e o terço da PDD. Como o
problema utiliza múltiplas variáveis independentes, ele é multivariado. O banco de dados foi organizado assim:(a)
Variável dependente: classificação da segurança operacional (binária, 0 para não adequada e 1 para adequada); (b)
Variáveis independentes: coeficiente de atrito (contínua), profundidade da macrotextura (contínua), remoção de
borracha (binária, 0 para remoção de borracha, 1 para não remoção de borracha), terço da PPD (discreta, 1, 2 e 3
para representar o primeiro, o segundo e o terceiro terço da pista, respectivamente), localização na pista (discreta,
contado a cada 100 m) e tipo de revestimento asfáltico (binária, 0 para CA e 1 para CPA).

Baseando-se nas características do fenômeno, no tamanho do banco de dados e na análise exploratória dos
dados, verificou-se que o uso de redes Multilayer Perceptron (MLP) poderia ser adequada para a modelagem
pretendida neste estudo. Para o treinamento da rede MLP adotou-se a recomendação de Lippmann 1987, que diz
que, no caso de apenas uma camada intermediária, ela deverá ter s.(i+1) neurônios, onde: s é o número de neurônios
na camada de saída e i é o número de neurônios na camada de entrada. Assim, a arquitetura inicial da rede é 6:7:1,
ou seja, 6 neurônios na camada de entrada, 7 neurônios (1.(6+1)) na camada intermediária e 1 neurônio na camada
de saída.

Adotou-se também a recomendação de Hecht-Nielsen 1989, que recomendam que a camada intermediária deve
ter (2i+1) neurônios, onde i é o número de neurônios na camada de entrada. Dessa forma, a arquitetura inicial da
rede, de acordo com essa recomendação, é 6:13:1, ou seja, 6 neurônios na camada de entrada, 13 neurônios na
camada intermediária (2.6+1) e 1 neurônio na camada de saída.

Além das arquiteturas iniciais, também foram testadas as taxas de aprendizagem de 5%, 10%, 15% e 20%;
as funções de ativação Sigmoide e ReLU; os algoritmos Backpropagation e Levenberg-Marquardt. Dessa forma,
foram testadas 18 arquiteturas diferentes para escolha do modelo mais adequado à classificação pretendida.

Para o pré-processamento dos dados, inicialmente criou-se uma ordem aleatória no conjunto de dados e foi
realizada a sua normalização usando o método Min-Max entre 0 e 1. Em seguida, os dados foram separados em
2 subconjuntos, mutuamente exclusivos, em que 70% correspondem ao subconjunto de treinamento, validação e
teste do modelo. Assim, destes 70%, 15% foram usados para teste, 15% para validação e 70% para o treinamento.
Os outros 30% dos dados foram usados no subconjunto de teste adicional, ou seja, estes dados não foram usados
durante a etapa de treinamento da rede, sendo apresentados a ela após o treinamento, para avaliar a sua capacidade
de aprendizado e generalização. Para isso, foi usada a matriz de confusão, a curva ROC, a AUC e o MSE.
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4 RESULTADOS E DISCUSSÕES

Com o intuito de compreender melhor os dados utilizados neste estudo, foi realizada uma análise descritiva das
variáveis coeficiente de atrito e profundidade da macrotextura, mostrada na Tabela 2.

Tabela 2: Análise descritiva.

Análise Descritiva CA CPA CA+CPA
A PM A PM A PM

Média 0,78 0,96 0,66 1,38 0,74 1,11
Desv. Pad. 0,13 0,20 0,06 0,13 0,12 0,27

CV (%) 16,26 21,39 9,30 9,71 16,72 24,63
Intervalo 0,01 0,01 0,01 0,01 0,01 0,02

Limite Superior 0,79 0,97 0,66 1,39 0,74 1,13
Limite Inferior 0,77 0,94 0,65 1,37 0,73 1,10

A – Coeficiente de Atrito; PM – Profundidade da macrotextura.

A média para o coeficiente de atrito é maior para o revestimento de Concreto Asfáltico, enquanto a média
da macrotextura é maior para o revestimento de Camada Porosa de Atrito (Tabela 2). Isso pode ter ocorrido
porque a CPA é um revestimento poroso, com textura superficial mais aberta, caracterizando os maiores valores de
macrotextura. O coeficiente de variação foi maior para os valores de profundidade da macrotextura, possivelmente
devido ao método de medição utilizado – o ensaio de mancha de areia. Esse método pode apresentar maiores
variações nos resultados, conforme observado por Pinheiro Neto et al. (2015) e Maia, Oliveira e Silva 2023. Com
o intuito de avaliar a relação entre as variáveis utilizadas nesse estudo, foi obtida a matriz de correlação apresentada
na Tabela 3.

Tabela 3: Matriz de correlação.

A PM RAB TP LP RV CSO
A 1,00

PM -0,40 1,00
RAB 0,17 0,04 1,00
TP 0,15 -0,16 -0,02 1,00
LP 0,34 -0,41 -0,07 0,86 1,00
RV -0,49 0,75 0,18 -0,17 -0,49 1,00

CSO 0,54 0,03 0,04 0,06 0,16 -0,22 1,00
A – Coeficiente de Atrito; PM – Profundidade da macrotextura; RAB – Remoção de borracha; TP – Terço da PPD; LP – Lado da PPD; RV –

Tipo de revestimento; CSO – Classificação da segurança operacional.

Da Tabela 3, observa-se que a classificação da segurança operacional obteve maiores correlações com o co-
eficiente de atrito, a localização na PPD e uma correlação inversa com o tipo de revestimento asfáltico. Além
disso, observa-se uma correlação inversa entre o coeficiente de atrito e a profundidade da macrotextura. A maior
correlação observada foi entre a profundidade da macrotextura e o tipo de revestimento asfáltico.

Em relação ao treinamento da rede MLP, os melhores resultados foram obtidos para a rede com arquitetura de 7
neurônios na camada intermediária, pois a rede com 13 neurônios começou a apresentar overfitting. Segundo Qua-
riguasi (2020), o overfitting ocorre quando a rede se ajusta demasiadamente aos dados de treinamento, diminuindo
a sua capacidade de generalização.

Em relação aos algoritmos utilizados, o Levenberg-Marquardt apresentou melhores resultados do que o Back-
propagation padrão. O algoritmo de Levenberg-Marquardt é conhecido por sua eficiência e precisão, uma vez que
aumenta a velocidade de treinamento sem perda de desempenho da rede (Telles et al., 2013).

Para as funções de ativação, os melhores resultados foram obtidos com a função ReLU. Essa função é compu-
tacionalmente mais eficiente, convergindo mais rapidamente (Rizzo e Canato, 2020). Além disso, foram testadas
quatro taxas de aprendizado diferentes, obtendo-se melhores resultados com a taxa de aprendizado de 20%. A
Arquitetura da rede utilizada neste estudo está apresentada na Figura 1.
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Figura 1: Arquitetura da rede MLP.

Assim, a rede MLP que apresentou os melhores resultados para a modelagem pretendida neste estudo tem sua
arquitetura conforme descrito na Tabela 4. A performance da rede foi calculada usando o MSE, com os resultados
apresentados também na Tabela 4.

Tabela 4: Arquitetura da rede MLP e performance.

Arquitetura Performance
Entrada 6 Performance 0,0012
Intermediária 7 trainPerformance 4,5078× 10−10

Saída 1 valPerformance 9,4633× 10−8

Algoritmo Levenberg–Marquardt testPerformance 0,0077

Função de ativação ReLU testPerformance 0,0054
Taxa de aprendizado 20%

O MSE para os conjuntos de teste foram de 0,0077 e 0,0054 (Tabela 4), valores considerados baixos, mostrando
que a rede conseguiu classificar adequadamente a segurança operacional da PPD para os dados utilizados neste
estudo. As Figuras 2 e 3 mostram as matrizes de confusão das etapas de treinamento, validação e teste.

Figura 2: Matriz de confusão das etapas de treinamento e validação.

Observando-se as Figuras 2 e 3, nota-se que a rede apresentou um acerto de 100% nas etapas de treinamento
e validação, e um acerto de 99,2% na etapa de teste, com um acerto de 99,9% considerando todos os dados. Esse
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Figura 3: Matriz de confusão das etapas de teste e todos os dados.

resultado mostra um bom desempenho geral. A Figura 4 mostra a matriz de confusão para o teste adicional, que
foi realizado considerando 30% do conjunto de dados que não foram usados na etapa de treinamento.

Figura 4: Matriz de confusão para o teste adicional.

Da Figura 4, verifica-se que no teste adicional realizado exclusivamente com dados que nunca tinham sido
apresentados à rede, o modelo apresentou um acerto de 99,5%. Ou seja, apenas 0,5% dos dados não foram classi-
ficados adequadamente, o que pode ser considerado um valor baixo, mostrando que o modelo gerado é promissor
para classificar a segurança operacional da PPD. Ainda com o intuito de avaliar o desempenho da rede, foram
utilizadas as curvas ROC, mostradas nas Figuras 5, 6 e 7.

Das Figuras 5, 6 e 7, é possível perceber que os valores de AUC foram muito próximos de 1 nas etapas de teste
do modelo, com a curva ROC se aproximando do canto superior esquerdo. Quanto mais a curva ROC se aproxima
do canto superior esquerdo, melhor é o modelo de classificação. Sendo assim, este resultado mostra a adequação
do modelo gerado para a classificação da segurança operacional da PPD. A Tabela 5 apresenta um resumo das
métricas obtidas para avaliação do modelo de classificação.

Tabela 5: Resumo das métricas de avaliação do modelo.

Métricas Treinamento Validação Teste Teste Adicional
Matriz de confusão 100% 100% 99,2% 99,5%

AUC 1 1 0,99 0,99
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Figura 5: Curva ROC para as etapas de treinamento e validação.

Figura 6: Curva ROC para as etapas de teste e todos os dados.

Figura 7: Curva ROC para a etapa de teste adicional.
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Tanto a matriz de confusão, quanto a Curva ROC demonstram a adequação do modelo de classificação (Tabela
5). Com isso, espera-se contribuir para a segurança operacional de PPD ao fornecer uma ferramenta de apoio
à tomada de decisão em relação aos parâmetros de resistência à derrapagem. Entretanto, algumas limitações
devem ser consideradas. O modelo foi treinado e validado com dados específicos de duas PPD brasileiras, o que
pode restringir sua aplicabilidade a outras pistas com características distintas. Além disso, fatores externos como
variações climáticas e diferentes padrões de tráfego aéreo não foram incluídos na análise, o que pode impactar o
desempenho do modelo em cenários não observados.

5 CONCLUSÃO

O objetivo deste artigo foi obter um modelo para classificação da segurança operacional de pistas de pouso em
decolagem (PPD) usando uma rede neural do tipo Multilayer Perceptron. Foram utilizados dados de coeficiente
de atrito, profundidade da macrotextura, dentre outros, de duas PPD, sendo uma com revestimento de Concreto
Asfáltico (CA) e outra com Camada Porosa de Atrito (CPA). Foi possível acompanhar as condições de resistência
à derrapagem, observando-se que a PPD com revestimento em CPA apresentou resultados satisfatórios para a
profundidade da macrotextura e com CA, para o coeficiente de atrito.

O modelo gerado neste estudo mostrou a adequação ao uso da técnica de Redes Neurais Artificiais para clas-
sificar a segurança operacional de PPD. Constata-se o potencial das técnicas de machine learning na melhoria da
segurança em PPD com diferentes tipos de revestimentos asfálticos. Assim, compreender e classificar a resistência
à derrapagem de PPD é fundamental para garantir a segurança das operações aeroportuárias, uma vez que uma PPD
com resistência deficiente pode contribuir para a ocorrência de incidentes e acidentes, especialmente em presença
de água. Caracterizar essa resistência permite identificar áreas de risco e adotar medidas corretivas em pavimentos
aeroportuários.
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