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Resumo. The objective of this study was to evaluate the correlations between vegetation indices (VI),
obtained by RGB camera on flights of Remotely piloted aircraft System (RPA), with yield maps of agri-
cultural crops. Monitoring was carried out during 4 harvest seasons: soybean 2018/19, maize (2019),
soybean 2019/20 and wheat (2020), in two areas of a rural property located in Toledo, Paraná. During
the harvests, periodic flights were performed using DJI-branded RPA Phantom 3 Advanced. For the
generation of orthomosaic, Agisoft PhotoScan software (Free trial) was used. After the RGB bands
normalization, the vegetation indices MPRI, VARI, GLI and ExG were calculated for 3 flight dates in
each harvest in the study areas. At the end of the crop cycle, samples were collected to create the yi-
eld maps. With the yield data, descriptive statistics analyzes were performed and, later, the correlation
between the VIs and the yields of each harvest was performed using Spearman’s correlation coefficient
(rs). According to the research, it would be suggested that the farmer carry out surveys with RPA with
RGB camera in soybean crop, mainly in R7 stage, in maize at VT (bolting) stage and in wheat at tillering
stage, since these phenological stages showed higher correlations and between the VIs and the yield of
each crop. The pairs of VIs MPRI and VARI, GLI and ExG were similar as vegetative indicators, so only
two of them would already have the capacity to represent the variations existing in the areas of the study
between the dates.

Palavras-chave: drone; MPRI; VARI; EXG; GLI; remote sensing.

CORRELAÇÃO ENTRE ÍNDICES DE VEGETAÇÃO OBTIDOS POR
RPA E PRODUTIVIDADE DE GRÃOS

Abstract. O objetivo deste estudo foi avaliar correlações entre índices de vegetação (IV), obtidos por câmera
RGB em voos de Remotely Piloted Aircraft System (RPA), com mapas de produtividade de culturas agrícolas. O
monitoramento foi realizado durante quatro safras agrícolas: soja 2018/19, milho (2019), soja 2019/20, trigo (2020),
em duas áreas de propriedade rural localizadas no município de Toledo – Paraná. Durante as safras, foram realizados
voos utilizando RPA Phantom 3 Advanced, da marca Dji. Para a geração dos ortomosaicos, utilizou-se software
Agisoft PhotoScan. Após a normalização das bandas RGB, calcularam-se os índices de vegetação MPRI, VARI,
GLI e ExG, para três datas de voos em cada safra. Na parte final do ciclo das culturas, realizou-se coleta de
amostras para criação dos mapas de produtividade. Com os dados de produtividade, foram realizadas análises de
estatística descritiva e, posteriormente, realizada a correlação entre os IVs e as produtividades de cada safra, por
meio do coeficiente de correlação de Spearman (rs). De acordo com a pesquisa, seria indicado que o produtor
fizesse levantamentos com RPA com câmera RGB na cultura da soja, principalmente no estádio R7, no milho no
estádio de VT (pendoamento) e no trigo no estádio de perfilhamento, visto terem sido esses os estádios fenológicos
que apresentaram maiores correlações e entre os IVs e as produtividades de cada cultura. Os pares de IVs MPRI e
VARI, GLI e ExG se mostraram semelhantes como indicadores vegetativos, portanto, somente dois deles já teriam
capacidade de representar as variações existentes nas áreas do estudo entre as datas.

Keywords: drone; MPRI; VARI; EXG; GLI; sensoriamento remoto.
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1 INTRODUCTION

The modernization that is taking place in several sec-
tors, has also reached agriculture, in view of the fact
that in recent years crop yield has increased, with com-
puterization in the field. One of the factors responsi-
ble for this is the adherence of farmers to precision far-
ming (PF) techniques, which provide important tools,
that can be used to evaluate productive capacity and
to assist decision making, aiming to achieve higher yi-
eld, with less environmental impact (Yuzugullu et al.,
2020).

One of the sources of information for PF is data ac-
quired through remote sensing (RS), which consists of
obtaining spectral data related to the crops agronomic
characteristics, without direct contact with the targets,
with advantages of enabling data collection in less time
and with reduced impacts (Costa; Nunes; Ampatzidis,
2020), providing information on the stage of the crop
over the harvest at different scales (Weiss; Jacob; Du-
veiller, 2020).

Difficulties that once existed for acquiring satellite
image data, especially those that require lower spa-
tial resolution, because they are paid, can be solved
by using the Remotely Piloted Aircraft System (RPA),
which have great flexibility and the ability to provide
many specific information about the area (Alexopoulos
et al., 2023). Another advantage is the possibility of
using commercial cameras, free of more complex and
expensive sensors, allowing greater dissemination and
reducing costs related to field operation (Andrade Ju-
nior et al., 2021; Freire-Silva et al., 2019).

Thus, the development of RPA provided a new
approach to PF, enabling the acquisition of high-
resolution space-temporal images (Zhou et al., 2020)
and providing new tools for vegetation monitoring and
data with very high temporal and spatial resolutions
(Banerjee; Raval; Cullen, 2018).

One of the products generated by PF using RPA is
the vegetation index (VI), which, according to Costa,
Nunes e Ampatzidis (2020), represents a combination
between two or more spectral bands, generated by
mathematical equations, which have the objective of
synthesizing and improving the relation of data with ve-
getation biophysical parameters.

These combinations faithfully represent variations
in the leaves, not only in seasonal terms, but across the
Earth’s surface, with the objective of detecting varia-
bilities, which could help in the study of the spectral
and temporal patterns of crops during their phenologi-
cal cycle. and in association with factors that condi-
tion the development of grains, contributing to farmers
decision-making (Barbedo, 2019).

Many PF applications use vegetation indexes to me-
asure plant phenological parameters (Semeraro et al.,
2019). Some indices used in agriculture use RGB and
infrared lengths such as: NDVI (Rouse et al., 1974) and
SAVI (Huete, 1988). Other indices use only RGB, na-
mely: VARI (Gitelson et al., 2003), MPRI (Yang; Wil-
lis; Mueller, 2008), GLI Green Leaf Index (Louhaichi;
Borman; Johnson, 2001) and Excess of green - ExG
(Woebbecke et al., 1995).

Analyzing 15 vegetation indices obtained with RPA
equipped with multispectral camera, (Hoyos-Villegas;
Fritschi, 2013) verified that indices using visible and in-
frared spectrum wavelengths, such as NDVI and SAVI,
showed the ability to detect changes in biomass, canopy
coverage and senescence, particularly in the grain fil-
ling stages.

Prestes et al. (2020) evaluated VIs that use only vi-
sible lengths and VIs that also use infrared lengths th-
roughout soybean development and found that VARI
presented the highest correlation with crop yield on the
four dates evaluated, with values higher than NDVI.
These results provide a good perspective on the use of
the RGB camera that can provide a cost-effective and
viable solution for estimating crop yield.

The objective of this study was to evaluate the cor-
relations of the VIs MPRI, VARI, GLI and ExG, ob-
tained by RGB camera on RPA flights, with crop yield
data in four harvests (soybean 2018/2019, maize 2019,
soybean 2019/2020 and wheat 2020), in rural property
located in Toledo, Paraná State.

2 MATERIALS AND METHODS

2.1 Study area

Monitoring was carried out in two areas (37 hecta-
res and 22 hectares) of a rural estate (Figure 1) located
in the municipality of Toledo – Paraná. The soil of the
region is classified as Dusky-red Latosol (EMBRAPA,
2018). The climate of the region is Cfa type, humid sub-
tropical, with average temperatures of 21.1ºC, and ave-
rage annual rainfall between 1550 and 1650 mm (Apa-
recido et al., 2016).

2.2 Flight planning with RPA

For monitoring the areas, an overflight was perfor-
med with the RPA Phantom 3 Advanced Model, type
quadcopter multirotor type. RPA has an approximate
mass of 1.3 kg, with a flight autonomy of approxima-
tely 23 min, in ideal climatic conditions (without wind),
and equipped with an RGB camera with 12.4 megapixel
resolution, coupled to a 3-axis stabilization gimbal with
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Figure 1: Location of the experiment and sampling points of yield
samples.

tilt angle control, ranging from 90º to +30º, allowing
video recording at 2.7K and shutter speed of 1/8000 s.

During the experiment period, three flights were
performed in each harvest, totaling over four harvests
24 flights (Table 1). It is worth pointing out that for
maize harvest (2019), a flight date was discarded, be-
cause the generated orthomosaic presented failures.

The flight plans were carried out with the aid of
Drone deploy software (Free trial), with an altitude of
120 m, generating a Ground Sample Distance (GSD)
of, approximately, 5 cm/pixel. The vertical and hori-
zontal overlaps established for the flights were 70%.
Specific software Agisoft PhotoScan (Free trial) was
used to generate the orthomosaic. For geometric cor-
rection of the areas and accuracy of the surveys, 15 fi-
xed control points (CPs) were used in the areas (15 CPs
in area 1 and 11 CPs in area 2); their geographic coordi-
nates were obtained with the GNSS NAVCON receiver,
tracking in phases L1/L2. Subsequently, correction was
performed with IBGE data through Precise Point Posi-
tioning (PPP). After the images were processed and the
orthomosaic generation, the R, G, B bands were sepa-
rated, with the help of the “Divide RGB Bands” tool of
QGIS (version 3.10). After this stage, the band norma-
lization process was performed, aiming to correct possi-
ble imperfections, following methodologies performed
by Ballesteros et al. (2018). The special resolution of
the RPA images was transformed to 10 m using the re-
sample command of QGIS, with the objective of stan-
dardizing the pixel size for the Sentinel-2 satellite pixel
size, which is the same size.

2.3 Vegetation indices

After this normalization, the MPRI, VARI, GLI and
ExG vegetation indices were calculated using the QGIS
software for the three flight dates in the study areas (Ta-
ble 2), using interval criteria for the classes classifica-
tion.

2.4 Yield of agricultural crops

At the end of the crops cycle of each harvest, pro-
duction samples collection was performed to elaborate
the yield maps. The area collected was 1 m² per sample
point (Figure 1), manually performed in a regular grid
of one sample per hectare, 37 samples for area 1 and 22
samples for area 2.

After each harvest, the grain threshing of each sam-
ple was performed, using a grain threshing specific ma-
chine, and after weighing, grain moisture evaluation, in
sequence, according to the seeds analysis rule (SAR),
to be corrected to 13% of moisture (Brasil, 2009) and
finally, obtain the weight of the grains, which were con-
verted into kilograms per hectare (kg ha−1).

2.5 Data analysis

The data interpolation was performed by the ordinary
Kriging method, using the precision agriculture com-
plement: QGIS software Smart-Map, for generating the
yield maps used in the research. With the yield data, a
descriptive statistical analysis was performed. The co-
efficients of variation (CVs) for each harvest were eva-
luated according to the classification of Gomes (2009):
low (< 10%); medium (between 10 and 20%); high
(between 20 and 30%); and very high (> 30%).

Subsequently, the Spearman correlation coefficient
(rs) was determined between the VIs and the yields of
each harvest. It is worth pointing out that the Spearman
coefficient (rs) is used when the relationship between
the data pairs is not linear or when there is no normality
in the data set. Its result may vary between 1 and -1,
where 1 means a perfect correlation, 0 means that there
is no correlation, and -1 that there is a perfect negative
correlation (Inman, 1994).

In order to determine the correlation between the
yields of the areas collected in the field, the VIs were
quantified in a buffer of 30 m radius around the grid
coordinate presented in Figure 2D, with the objective
of using subsequently the average of 25 pixels of this
region for the analysis. This procedure was performed
in the Quantum GIS software (QGIS, 2021), using the
Zonal Statistics function that allows quantifying the VIs
mean values in each sampling point.
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Table 1: Period of flights carried out with RPA and the crops phenological stage during the four harvests

Harvests/Flights Flight 1 Flight 2 Flight 3
DAS Stages DAS Stages DAS Stages

ar
ea

1

Soybean 2018/2019 48 R3 59 R5 80 R6
Mayze 2019 30 V3 — — 119 VT

Soybean 2019/2020 48 R2 75 R4 82 R5
Wheat 2020 42 PER 65 FL 92 EG

ar
ea

2

Soybean 2018/2019 60 R4 75 R6 94 R7
Mayze 2019 44 V3 — — 133 R1

Soybean 2019/2020 47 R2 74 R3 81 R5
Wheat 2020 42 PER 65 FL 92 EG

Subtitles: DAS = Days after sowing. Soybean: R2 = Full flowering; R3 = Beginning of pod formation; R4 = pod fully developed; R5 = Start
of grain filling; R6 = Full or full grain; R7 = Start of maturation. Mayze: V3 = 3 Leaves developed; V7 = 7 developed leaves; VT = Bracing;
R1 = Flowering and pollination. Wheat: PER = Tillering; FL= Flowering; EG = Grain filling.

Table 2: Vegetation indices obtained with RGB camera attached to
RPA

Vegetation index Equation
MPRI GREEN−RED

GREEN+RED

VARI GREEN−RED
GREEN+RED−BLUE

GLI GREEN−RED−BLUE
GREEN+RED+BLUE

ExG (2.GREEN −RED −BLUE)

Subtitles: RED = reflectance in the red region (nm); GREEN =
reflectance in the green region; BLUE = reflectance in the blue
region.

Correlations were determined in the Minitab soft-
ware (MINITAB, 2003) and significant correlations
were considered for those whose p-value was less than
5% significance (0.05). To evaluate the correlations,
Callegari-Jacques (2003) classification was used, in
which rs can be assessed qualitatively by the following
intervals: 0.9 ≤ | rs | ≤ 1.0, meaning very strong cor-
relation; 0.7 ≤ | rs | < 0.9, meaning strong correlation;
0.4 ≤ | rs | ≤ < 0.7, meaning moderate correlation; 0.2
≤ | rs | < 0.4, meaning weak correlation; 0.0 ≤ | rs | <
0.2, meaning very weak correlation.

3 RESULTS AND DISCUSSION
3.1 Vegetation indices of the harvests and areas

When analyzing the MPRI index along the harvests
(Figure 2A), it is verified that the highest values were
found for soybean (2019/2020), with 48 DAS, being in
stage R3, in which the pod is under formation, has ap-
proximately 5 mm in length and presented a large part
of the map with values between 0.30 and 0.50. For

the other harvests, the tendency was, on the first flight
date, to present lower values, as in the 2019 maize crop,
which, on flight 30 DAS, showed bands with values
between -0.30 and -0.10 in almost the whole map, be-
cause maize is at the beginning of development, in V3
stage, with only three developed leaves and a great part
of the soil still exposed. Values in this range were also
found in almost the whole map with 92 DAS for wheat
harvest (2020). In this case, due to the culture being
almost at the end of the cycle, approaching the matu-
ration stage. For the same wheat harvest, at 42 DAS
(tillering phase) in the northwest part of the map, re-
gions with low MPRI values were also found, due to
erosion caused by heavy rains that occurred a few days
after the crop sowing, which resulted in runoff with soil
loss, along with seeds that had not germinated yet.

For the VARI index, visual behavior similar to the
MPRI index was observed, only with ranges of values
included in a different scale, with higher values of the
index, also found in soybean (2019-2020), with 48 DAS
(between 0.60 and 1.00) (Figure 2B).

The GLI (Figure 2C) and ExG (Figure 2D) indices
showed some behaviors different from that seen in the
previous indices (MPRI and VARI), because there was
no such large decrease for the VIs on the last flights per-
formed; there was also emphasis in some parts, such as
the south of the 65 DAS map in the wheat crop, which
was flourishing and showed a range with values higher
than the rest of the area for that date. A little less noti-
ceable, but still possible to notice the erosion behavior
in the northwest part of the wheat area in 42 DAS (til-
lering) and 65 DAS (flowering and fruiting).

In the case of MPRI for area 2 (Figure 3A), it was
also verified that, in general, the highest values of the
index were for soybean area 2019/2020, mainly at 47
DAS, in stage R2 (full flowering), with values between
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Figure 2: Vegetation index for area 1, in the four harvests.

0.30 and 0.50. Except for this harvest, the remaining
ones showed on the last flight a discrepancy in the va-
lues along the area, with bands showing values below
the index (between -0.30 and -0.10). In 94 DAS (soy-
bean 2018/2019), in R7, at the beginning of maturation,
a range of values higher than the rest of the area was
observed in the east part of the map, as well as in 133
DAS (maize 2019), with the crop in R1 (flowering and
pollination). This difference occurred, as that range of
area corresponding to approximately 2 ha represented
part of the area that was sown with another variety in
the soybean crop and had a different end of cycle than
the rest, which resulted in a different sowing date also in
the subsequent crop (maize 2019). VARI for area 2 pre-
sented visual behavior similar to MPRI, although with
greater mildness (Figure 3B). Differences were also ob-
served for 94 (soybean 2018/2019) and at 133 DAS for
maize harvest (2019). At 47 DAS (R2) in the soybean
2019/2020 harvest, the values in most part of the map
were between 0.60 and 1.00, the highest ones, when
compared to the four harvests.

The GLI (Figure 3C) and ExG (Figure 3D) indi-
ces for area 2 also indicated that 47 DAS (Soybean

2019/2020) was the date on which the index expressed
its highest values when compared all the harvests. Gre-
ater uniformity among the dates was found, except for
maize with 133 DAS, in regions east and west of the
map that presented lower values, when compared to the
rest of the area. For wheat harvest (2020), with 65 DAS,
the central portion of the map presented values higher
than those found in the other regions of the area.

3.2 Harvests yield and areas

Based on the yield maps of area 1 (Figure 4), it is
observed that, for the soybean 2018-2019 harvest, the
highest values were concentrated in the region west of
the thematic map, with values exceeding 3000 kg ha−1,
while in the central part of the map going east, the va-
lues were mostly between 2900 and 2980 kg ha−1. For
the maize 2019 harvest, a large region of the western
center of the map presented higher yield values (above
6000 kg ha−1), part more to the southeastern of the
map obtaining lower yields (between 5550 and 5840 kg
ha−1).

For soybean 2019/2020 harvest, also the western re-
gion of the map presented the highest values, between

Conex. Ci. e Tecnol. Fortaleza/CE, v.18, p. 01-12, e022018, 2024 5



CORRELATION BETWEEN VEGETATION INDICES OBTAINED BY RPA AND GRAIN YIELD
Figure 3: Vegetation index for area 2, in the four harvests.

3960 and 4600 kg ha−1. Lower yield values were con-
centrated in the south of the map (3000 to 3200 kg
ha−1). The wheat harvest showed behavior contrary to
that found in other harvests, with lower yield values in
the western part of the map (1800 to 2080 kg ha−1);
from the part located more at central part to the east
of the map, the values were higher, especially for the
northern region, which obtained regions above 3000 kg
ha−1. When analyzing the yield maps of area 2 (Figure
5), it was verified that in the soybean 2018/2019 har-
vest, a large part south of the map presented the lowest
values for this harvest, between 1600 and 1960 kg ha−1,
with higher values in the northwest region, which rea-
ched yields above 2000 kg ha−1.

For maize harvest (2019), the highest values were
in the southeastern region of the map, between 7380

and 7500 kg ha−1. For soybean 2019/2020, a large
part of the map presented similar values, except for
the northwest and southeast regions, with lower yields
(2100 to 2420 kg ha−1). The wheat crop, more to the
southern part of the map, mainly in the southeast (2500
to 2700 kg ha−1), presented higher yield values, in con-
trast, the northwest region presented the lowest yield
values, between 1700 and 1900 kg ha−1.

In area 1, the soybean 2018/2019 harvest obtained
an average yield of 3094 kg ha−1 and the maize 2019
harvest, 6456 kg ha−1; soybean 2019/2020 obtained an
average of 3719 kg ha−1 and wheat 2020 reached 2511
kg ha−1 (Table 3). For area 2, all the harvests presented
values lower than area 1, except for the maize harvest
(2019), which obtained an average of 7166 kg ha−1 sur-
passing area 1 in 710 kg ha−1.
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Table 3: Descriptive yields statistics of areas 1 and 2

Harvests Means Median SD Minimum Maximum VC

ar
ea

1

Soybean 2018/2019 3094 3068 92 2956 3253 3
Mayze 2019 6456 6567 470 5554 7140 7

Soybean 2019/2020 3719 3697 349 3048 4523 9
Wheat 2020 2511 2609 327 1847 3112 13

ar
ea

2

Soybean 2018/2019 2005 1964 162 1654 2496 8
Mayze 2019 7166 7124 170 6924 7465 2

Soybean 2019/2020 2582 2622 162 2184 2853 6
Wheat 2020 2232 2225 227 1787 2621 10

Subtitles: SD = Standard Deviation; VC = Coefficient of variation (%).

Figure 4: Yield maps of the four harvests in area 1.

Figure 5: Yield maps of the four harvests in area 2.

By comparing the average data of the area with
those of CONAB (2021), it was observed that, for the
2018/2019 harvest, the yields of the two areas were be-
low the national average (3337 kg ha−1). According to
CONAB (2019), there was a 5.5% decrease in yield in
Brazil compared to the 2017-2018 harvest. In the state
of Paraná, the reduction was even higher (14.8%), with
2989 kg ha−1, compared to 3508 kg ha−1 of the pre-
vious harvest. Periods of long drought in some regions

of the state, possibly influenced the occurrence of this
difference. This fact may be related to the fact that the
amount of rainfall in the months of November and De-
cember was lower, compared to the historical average
of the property, with 121 mm (November) and 60 mm
(December), totaling 181 mm. Studying the temporal
variability of grain yield (soybean, maize and wheat) in
property in Rio Grande do Sul over six years, Amado
et al. (2007) observed that in normal rainfall harvests,
there was a tendency for greater homogeneity among
productive data, but in periods with water restriction,
the difference in productivity was greater.

Whereas for soybean 2019/2020 harvest, the value
of area 1 (Table 3) was higher and that of area 2 (Ta-
ble 3) was lower than the national average, which was
3379 kg ha−1 (CONAB, 2021). In this harvest, there
was a delay in sowing due to the drought, especially in
the month of September (8 mm), with more expressive
rains only in the second half of October, period when
the areas sowing was carried out. In November, the ac-
cumulated volume was 157 mm and, mainly, in Decem-
ber, the volume was more expressive (277 mm).

When comparing the maize 2019 harvest, the ave-
rage of the two areas was higher than the 5456 kg ha−1,
the Brazilian average of the second harvest. During this
harvest, all months presented regular rainfall, with a
highlight of 258 mm in the month of January, which
possibly contributes to good germination and establish-
ment of the crop. With 2928 kg ha−1 of yield average,
the wheat 2020 harvest was higher than that found in
this study, 2511 kg ha−1 (area 1) and 2232 kg ha−1

(area 2). The rainfall regime during the period that the
crop was in the field was irregular, and on May 22nd
and 23rd of 2020, there were rainfall of 133 and 83 mm,
respectively, which were elevated and caused losses of
soil and seed in part of the area, reflecting on final yi-
elds. In the subsequent months, there was a low rainfall
rate, 61 mm (June) and 27 mm (July), returning to more
expressive values only in August (150 mm).

Conex. Ci. e Tecnol. Fortaleza/CE, v.18, p. 01-12, e022018, 2024 7



CORRELATION BETWEEN VEGETATION INDICES OBTAINED BY RPA AND GRAIN YIELD
Table 4: Spearman correlation matrix between yield data and vegetation indices for areas 1 and 2, soybean 2018/2019, maize 2019, soybean
2019/2020 and wheat 2020.

area 1 area 2
Soybean 2018/2019

VI PROD MPRI VARI GLI PROD MPRI VARI GLI

48
D

A
S MPRI -0.43* -

60 DAS

-0.14 -
VARI -0.51* 0.94* - -0.09 0.88* -
GLI 0.01 -0.03 0.24 - -0.09 0.37 -0.01 -
ExG 0.01 -0.03 0.24 1.00* -0.09 0.37 -0.01 1.00*

59
D

A
S MPRI -0.38* -

71
D

A
S 0.14 -

VARI -0.40* 0.99* - 0.20 0.99* -
GLI -0.10 0.60* 0.54* - -0.24 -0.01 -0.11 -
ExG -0.10 0.59* 0.54* 1.00* -0.24 -0.01 -0.11 1.00*

82
D

A
S MPRI 0.14 -

94
D

A
S 0.47* -

VARI 0.12 0.99* - 0.53* 0.94* -
GLI 0.19 0.16 0.13 - 0.72* 0.79* 0.91* -
ExG 0.19 0.15 0.13 1.00* 0.72* 0.79* 0.91* 1.00*

Mayze 2019

30
D

A
S MPRI 0.02 -

44
D

A
S -0.24 -

VARI 0.03 0.99* - -0.25 0.99* -
GLI 0.01 0.85* 0.88* - -0.03 0.83* 0.83* -
ExG 0.01 0.85* 0.85* 1.00* -0.03 0.83* 0.83* 1.00*

11
9

D
A

S MPRI 0.18 -

13
3

D
A

S 0.26 -
VARI 0.20 0.98* - -0.01 0.66* -
GLI 0.26 0.16 0.28 - -0.20 -0.25 0.45* -
ExG 0.26 0.15 0.27 1.00* -0.20 -0.25 0.46* 1.00*

Soybean 2019/2020

48
D

A
S MPRI -0.17 -

47
D

A
S 0.25 -

VARI -0.16 0.93* - 0.32 0.96* -
GLI -0.16 0.93* 0.88* - 0.22 0.96* 0.88* -
ExG -0.15 0.93* 0.86* 1.00* 0.22 0.96* 0.89* 1.00*

75
D

A
S MPRI 0.34* -

74
D

A
S 0.28 -

VARI 0.33* 0.99* - 0.26 0.98* -
GLI -0.44* -0.42* -0.45* - 0.15 0.88* 0.83* -
ExG -0.44* -0.41* -0.44* 1.00* 0.15 0.88* 0.83* 1.00*

82
D

A
S MPRI -0.08 -

81
D

A
S -0.07 -

VARI -0.18 0.95* - -0.06 0.94* -
GLI 0.09 0.68* 0.50* - -0.06 0.88* 0.74* -
ExG 0.09 0.68* 0.48* 1.00* -0.06 0.88* 0.75* 1.00*

Wheat 2020

42
D

A
S MPRI 0.24 -

42
D

A
S -0.28 -

VARI 0.14 0.90* - -0.29 0.99* -
GLI 0.31 0.18 -0.19 - 0.21 0.18 0.15 -
ExG 0.32 0.18 -0.19 1.00* 0.21 0.18 0.15 1.00*

65
D

A
S MPRI 0.02 -

65
D

A
S -0.08 -

VARI -0.17 0.76* - -0.16 0.83* -
GLI 0.19 -0.16 -0.72* - 0.29 0.08 -0.31 -
ExG 0.19 -0.16 -0.72* 1.00* 0.29 0.08 -0.31 1.00*

92
D

A
S MPRI 0.00 -

92
D

A
S -0.25 -

VARI 0.08 0.97* - -0.21 0.99* -
GLI 0.24 -0.35* -0.17 - 0.01 0.21 0.22 -
ExG 0.23 -0.36* -0.18 1.00* 0.01 0.21 0.22 1.00*

Subtitle: PROD = Yield. DAS = Days after sowing. Note: *Significant (p-value <0.05).
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Gomes (2009) classifies CVS of all harvests as low
(below 10%), except for the wheat harvest, classified as
medium for both areas (Table 4).

3.3 Correlations between the vegetation indices
and harvests yields and areas

By analyzing the correlations among the VIs for the
two study areas, it is verified that MPRI and VARI pre-
sented, in most dates, correlations (from strong to very
strong), as well as the GLI and ExG indexes, which pre-
sented correlations classified as very strong for all dates
(Table 4).

Upon evaluating the correlations between VIs and
crop yields for area 1, there were significant correlati-
ons between yield and MPRI (0.34) and yield and VARI
(0.33), with 75 DAS in the soybean 2019/2020 harvest,
classified as weak. For the other harvests, the correlati-
ons were not significant.

In area 2 (Table 4), significant correlations were
found between yield and IVs, for MPRI (0.43) and
VARI (0.51), with 94 DAS in 2018/2019 soybean har-
vest, classified as moderate correlations; GLI and ExG
with 0.72, is classified as strong correlation. No signifi-
cant correlations were found in the remaining harvests.

By evaluating the correlation between VARI and
soybean yield, using an eBee model PPA with RGB
camera, Prestes et al. (2020) verified correlations with
r values between 0.8 (96 DAS) and 0.64 (121 DAS),
which were higher than those found in the present
study. Monteiro (2021), evaluating the temporal spec-
trum behavior of soybeans through vegetation indices,
found that soybean productivity showed a moderate cor-
relation (r = 0.45) with VARI.

Comparing MPRI and yield in different stages of
soybean crops in an experiment in the municipality of
Londrina - PR, Franchini et al. (2018) found positive
correlations in four moments evaluated throughout the
culture cycle, with values of 0.49, 0.54, 0.37 and 0.29,
respectively. Sanches et al. (2018), in an experiment
carried out in Itirapina - SP, obtained significant cor-
relations of 0.83 when evaluating sugarcane yield and
MPRI index.

By correlating soybean yield with vegetation indi-
ces of the visible length, namely: MPRI, VARI, ExG
and GLI, on six flights performed with RPA, using RGB
camera, Silva (2020) found that the correlations varied
between very weak and moderate, with r of a maxi-
mum of 0.50. Whereas for wheat crop, the correlations
were from 0.24 to 0.49, being higher for the GLI and
MPRI indices. García-Martínez et al. (2020), in work
on estimating corn grain yield from vegetation indices,
found at 79 DAS a correlation between productivity and

ExG of 0.71 and between productivity and VARI (0.67).
Luna Neto et al. (2023), evaluating the correlation of
corn crops subjected to biostimulants, found a corre-
lation between EXG and productivity of 0.02. Upon
evaluating crop wheat in Spain, Fernandez-Gallego et
al. (2019) observed that the highest correlations of the
RGB indices (among them the MPRI) with the wheat
grains yield were observed when the canopy color be-
gan to change from green to yellow.

In a study by Albert (2020), using MPRI in maize,
a significant positive correlation of 0.67 was found in
stage V6. Whereas in V9, it was negative, having signi-
ficance.

Gutierrez et al. (2012) demonstrated that the use
of VIs in the yield estimate may have restrictions in
some situations, especially when there is an imbalance
between the stages of crop development, which may be
affected by some stress suffered by the plant. Vianna
(2020), evaluating different IVs in soybean genetic im-
provement, found correlations in phase R.5, between
soybean productivity and the GLI index, ranging from
0.26 to 0.58, and between soybean productivity and
VARI, between 0.42 and 0.78.

In general, for all the harvests analyzed, there were
many variabilities related to the correlations between
the VIs and yield. Venteris et al. (2015) reported that
temporal analyzes of VIs data with agricultural crops
yields may be impaired due to the interference of se-
veral factors, among which the differences in the date
of image acquisition and the interaction with the crop
growth stage can be highlighted. It is worth pointing
out that due to climatic factors, a larger number of
flights could not be carried out, which might reflect in
some period that would better express the existing rela-
tionships among the studied variables.

4 CONCLUSIONS

According to the research, it is suggested that the
farmer carry out surveys with RPA with RGB camera
in soybean crop, mainly in R7 stage, in maize at VT
(bolting) stage and in wheat at tillering stage, since
these phenological stages showed higher correlations
and between the VIs and the yield of each crop.

The pairs of VIs MPRI and VARI, GLI and ExG
were similar as vegetative indicators, so only two of
them would already have the capacity to represent the
variations existing in the areas of the study between the
dates.
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