cone)-{oes

CIENCIA E TECNOLOGIA

EQUILIBRIO DINAMICO DE TRES CORPOS AUTOGRAVITANTES
IDENTICOS NA APROXIMACAO POS-NEWTONIANA

ALANA CAROLINA LIMA DOS SANTOS!, CELIO RODRIGUES MUNIZ', LEONARDO TAVARES DE OLIVEIRA!

! Universidade Estadual do Cear4/Faculdade de Educagio, Ciéncias e Letras de Iguatu
<alana.santos @aluno.uece.br> <celio.muniz@uece.br>|<leonardo.tavares @uece.br>

DOI: https://doi.org/10.21439/conexoes.v13i4.1850

Resumo. Estudamos o problema restrito de trés corpos de massas idénticas situados nos vértices de
um tridngulo equildtero, interagindo entre si por meio da gravidade. Consideramos, inicialmente, que
as massas estdo sujeitas a atracdo gravitacional newtoniana. Mostramos que 0s corpos orbitam com
velocidade angular constante em torno do centro de massa do sistema e que a terceira lei de Kepler se
aplica. Em seguida, corrigimos a lei da gravitagdo acrescentando a for¢a newtoniana um termo propor-
cional a 1/r%, o qual provém da Teoria da Relatividade Geral (TRG), na aproximagdo de campo fraco,
também chamada de pds-newtoniana. Encontramos que a velocidade angular, para uma dada distancia
entre os corpos, ¢ maior que a calculada para o caso newtoniano e que a terceira lei de Kepler nio é
mais obedecida. Calculamos também a distancia critica entre os corpos para a qual o sistema gira com
uma velocidade linear igual a da luz. Constatamos que essa distdncia ¢ menor que 0s respectivos raios
de Schwarzschild, de modo que, em tal situa¢do, uma andlise mais acurada requer o uso das equagdes
completas da TRG.

Palavras-chaves: Problema dos trés corpos. Teoria da Relatividade Geral. Aproximagdo pos-
newtoniana.

Abstract. We study the restricted problem of three bodies of identical masses located at the vertices of an
equilateral triangle, interacting with one another through gravity. We consider, initially, that the masses
are subject to the Newtonian gravitational pull. We show that the bodies orbit with constant angular
velocity around the center of mass of the system and that Kepler’s third law applies to it. Next, we
correct the gravitation law by adding to the Newtonian force a term proportional to 1/r%, which comes
from the General Relativity Theory (GRT), in the weak-field approximation, also called post-Newtonian.
We find that the angular velocity, for a given distance between the bodies, is greater than that calculated
for the Newtonian case and show that the Kepler’s third law is no longer obeyed. We also calculate the
critical distance between the bodies for which the system rotates with a linear velocity equal to that of
light. We find that this distance is smaller than their Schwarzschild radii, so that a more accurate analysis
requires the use of the complete equations of GRT.

Keywords: Problem of three bodies. Theory of General Relativity. Post-Newtonian approximation.

1 INTRODUGAO equagdes que representam o movimento dos trés cor-
pos, em um espaco tridimensional, considerando ape-

Em 1687, na sua obra “Principios Matemdticos da Fi- ~ 1as a atracdo gravitacional mitua (MARTINS; ZANO-
losofia Natural”, Isaac Newton resolveu o problema dos TELLO, [2018). Contudo, o problema ¢ classificado
dois corpos, considerando, exclusivamente, a atragdo ~ €0MO ndo integravel, pois ndo existem métodos ana-

gravitacional entre ambos (NEWTON] [1687). Ao adici- liticos que cxpressem as trajetorias dO_S corpos (YA-
onar um corpo a configuracio, obtemos o problema dos MADA| [2014). Inclusive, em 1890, Poincaré demons-

trés corpos. Logo, soluciond-lo consiste em resolver as ~ oU que essa configuragdo torna-se insolivel por qua-
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dratura (POINCARE, [1890).

No entanto, surgiram algumas situag¢des restritas ou
solucdes de equilibrio que permitem a abordagem do
problema dos trés corpos (YAMADA| [2014). Por volta
de 1767, Euler descobriu trés situacdes em que 0s cor-
pos orbitam ao redor do seu centro de massa em Movi-
mento Circular Uniforme (EULER,|1767). Por sua vez,
em 1772, Lagrange apresentou uma solugéo especifica
para os corpos com massas iguais situados nos vértices
de um triangulo equildtero (LAGRANGE] [1867). Ha
casos no sistema solar em que os corpos, no decorrer
de seus movimentos, assumem uma configuracdo se-
melhante & de um tridngulo equildtero como, por exem-
plo, o sistema Asterdides Troianos-Sol-Jipiter e o Lua
Polydeuces-Saturno-Lua Dione (PINTO, [2006). Uma
importante aproximacdo, conhecida como problema
restrito dos trés corpos, considera o sistema em que um
dos corpos possui massa desprezivel em relagdo aos ou-
tros dois que possuem massa finita (GOLDSTEIN; PO-
OLE; SAFKO| 2001). Lagrange definiu cinco pontos
(L1, Lo, L3, Lge Ls) que sdo solugdes para essa
configuracdo, chamados de pontos lagrangeanos ou es-
tacionarios (LAGRANGE), 1867).

Por outro lado, no inicio do século XX, a Fisica
Cléassica ndo conseguia explicar a radiagdo do corpo
negro, bem como, algumas concepgdes do eletromag-
netismo (HORVATH et al. 2011). Por isso, para ex-
plicar o fato de que a luz, enquanto onda eletromag-
nética poderia vagar pelo espago, inclusive no vécuo,
foi sugerida a existéncia do éter, um meio que preen-
chia o cosmo e que propagava os efeitos eletromagné-
ticos (WHITTAKER| [1989). Entretanto, o insucesso
do experimento de Michelson-Morley, que visava com-
provar a existéncia do éter, atrelado a uma série de ou-
tras experiéncias, culminaram por decretar o declinio do
sistema Newtoniano (THORNTON; MARION, 2011).
Em 1905, abandonando a ideia do éter, em paralelo aos
trabalhos de Poincaré e Lorentz, Albert Einstein estabe-
leceu os postulados fundamentais da Teoria da Relativi-
dade Especial: o principio da relatividade e o postulado
referente a constancia da velocidade da luz (EINSTEIN,
1905). A relatividade especial contempla apenas refe-
renciais inerciais. Estendendo a andlise para referenci-
ais acelerados, em 1916, Einstein desenvolveu a Teoria
da Relatividade Geral (EINSTEINL|1916)), que explica a
atracdo gravitacional como um efeito resultante da cur-
vatura do espago-tempo, isto €, os corpos massivos dis-
torcem a geometria do espago circundante, de modo a
que as particulas proximas sigam trajetérias geodésicas
(EINSTEIN}, [1999). O tempo € também “distorcido”,
na forma de atrasos nos relégios posicionados proxi-

mos as massas em relacdo aos situados em locais mais
distantes.

A Teoria da Relatividade Geral, na aproximacdo de
campo fraco, chamada também de pds-newtoniana, em
que a distor¢do espaco-temporal € vista apenas como
uma pequena modificacdo da geometria referente a um
espaco-tempo “plano”, considera que um dos efeitos re-
sultantes em primeira ordem de aproximacao é produzir
uma correcdo na lei da forga gravitacional formulada
por Newton, adicionando-se um termo proporcional a
1/ 4 (THORNTON; MARION| 201 1). No caso do pro-
blema de dois corpos sob mutua atracdo gravitacional
newtoniana, quando um deles segue uma 6rbita eliptica
em torno do outro, ao se levar em conta a corregdo re-
lativistica, o eixo maior do que era uma elipse passa a
rotacionar também em torno do centro atrator, de modo
que a trajetéria assume uma forma semelhante a de uma
curva rosicea. E interessante mencionar aqui o teorema
de Bertrand, que afirma que dois corpos atraindo-se mu-
tuamente descreverdo Orbitas limitadas e fechadas ape-
nas para uma forca proporcional ao inverso do quadrado
da distincia (gravidade newtoniana) ou proporcional a
distancia entre eles (como no oscilador harmonico tri-
dimensional) (THORNTON; MARION|2011). A forca
que descrevemos neste trabalho, com um termo pertur-
bativo do tipo 1/r4, portanto, no se enquadra no refe-
rido teorema e a 6rbita € aberta, precessionando.

Nesse contexto, nosso trabalho objetiva analisar o
problema do equilibrio dindmico de sistemas formados
por trés massas iguais, situadas nos vértices de um tri-
angulo equilédtero. Inicialmente, revemos o problema
do ponto de vista da Gravitagdo Universal Newtoniana,
considerando esta como a responsdvel pela atracao mu-
tua entre os corpos. Posteriormente, incluimos a cor-
recdo referente a aproximagdo pds-newtoniana, decor-
rente da Teoria da Relatividade Geral. Calcularemos,
assim, nos dois casos, a velocidade angular do sistema
para a qual ocorre o equilibrio dindmico entre as mas-
sas, comparando-as entre si. No caso relativistico, uma
distincia critica entre as massas também sera obtida,
para a qual a velocidade linear de rotacdo dos corpos
torna-se igual a velocidade da luz. Uma discussdo so-
bre a terceira lei de Kepler também ¢ realizada.

E vilido ressaltar que as dez equacdes de campo da
Teoria da Relatividade Geral, as quais relacionam a ge-
ometria do espago-tempo com o seu contetido de ma-
téria e energia, sdo altamente ndo lineares, deixando de
valer, no caso geral, o principio de superposi¢do. No en-
tanto, tal principio € utilizado neste trabalho, uma vez
que na aproximacgao de campo fraco tais equacdes po-
dem ser linearizadas, podendo ser inclusive escritas na
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forma das equagdes de Maxwell do Eletromagnetismo.
(MASHHOON, [2007).

O trabalho estd organizado da seguinte forma: na
Secdo 2, analisamos o problema dos trés corpos de
massas iguais do ponto de vista newtoniano e pds-
newtoniano; na Se¢do 3, os resultados sdo discutidos
e na Sec¢do 4, fechamos o artigo com as conclusdes.

2 PROBLEMA DE TRES CORPOS IDENTICOS
NOS VERTICES DE UM TRIANGULO EQUI-
LATERO

Um dos principais problemas estudados na mecanica
celeste é determinar o equilibrio dindmico dos corpos
quando estes interagem gravitacionalmente entre si. Is-
sac Newton, o primeiro a formular o problema de n cor-
pos em 1687, propds uma configuracio na qual os cor-
pos sdo esferas perfeitas e a atragdo mutua ocorra como
se toda a massa dos corpos estivessem concentrada em
seu centro de massa. Para esses tipos de sistemas de n
corpos, sujeitos apenas as acdes das forgas gravitacio-
nais newtonianas, chama-se problema newtoniano de n
Corpos.

2.1 Abordagem Newtoniana

O problema newtoniano restrito de trés corpos, so-
lucionado por Joseph Lagrange em 1772 , consiste em
trés corpos nos vértices de um tridngulo equilétero inte-
ragindo mutuamente por ac¢do gravitacional (DANBY),
1992). Considere, inicialmente, trés corpos de mas-
sas finitas my, mo e mg distribuidas nos vértices de
um tridngulo equildtero de lado r. Assim, pelas leis de
Newton, as equacdes de movimento sobre cada um dos
corpos sdo dadas por

. Gm1m2 Gm1m3
miry = — 3 ri2 — 3 ri3;
T2 13
. GQOl Gm2m3
Moly = ———5—T21 — — 523} (D
21 723
. Gm3m1 Gm3m2
mars = — 3 I3 — 3 r32;
31 T'32

onde ¥; € a aceleragdo do i-ésimo corpo em relagdo ao
centro de massa do sistema, G € a constante gravitaci-
onal e r;; = r; — r; € o deslocamento relativo entre os
corpos com I;; = —rj; paras,j € {1,2,3} e i # j.
Somando as equagdes (1)), tem-se

do sistema estd em repouso ou desloca-se em linha reta
com velocidade constante com relacdo ao referencial
inercial considerado. Entdo, suponha que o centro de
massa da configuragdo de particulas coincida com a ori-
gem do sistema de coordenadas. Além disso, como os
corpos estdo nos vértices do tridngulo equildtero, entdao

T21 =T13 =732 =T (3

Consequentemente, por () e (3), a distancia dos corpos
em relacdo ao centro de massa do sistema deve ser

-
r = M\/nﬁ +mymy +m3, 4)

na qual i,5,k € {1,2,3}, comi # j #* k,e M =
(m1 + mo + m3).

As equagdes (I), (@) e (@) implicam que as resultan-
tes das forcas sobre cada uma das massas do sistema,
sdo oM
. ®)

Em particular, quando se tém trés corpos de mesma
massa, m, nos vértices de um tridngulo equildtero de
lado 7, as equagdes e @) devem ser reescritas, res-
pectivamente, como

mlrz = —

T (6)

ou seja, o centro de massa encontra-se no baricentro do
tridngulo, e
; Gm? .
Fy = —V3~ 5k, )

onde Fg\l,) ¢é a forca newtoniana resultante sobre cada um
dos corpos na direcdo do vetor unitdrio r;, conforme a
Figural]

A partir da Equacdo (7), pode-se afirmar que esta
forca resultante tende a se igualar a forca centripeta para
manter o equilibrio dindmico do movimento. Assim, a
velocidade angular newtoniana da configuragéo de par-
ticulas em relag@o ao centro de massa do sistema, sera

w=\/3f;”. 8)

Por fim, a partir da expressdo (8), vale afirmar que o
movimento orbital do sistema, formado por trés corpos
de massas iguais nos vértices de um tridngulo equila-
tero, satisfaz a conhecida Terceira Lei de Kepler (NUS-
SENZVEIG, 2002), ou seja,

mafy + mafty +msis = 0, @) r_ ©)
ou seja, a resultante das forcas internas (gravitacionais) dr® - 3Gm
é nula e, como ndo hé forgas externas, o centro de massa  onde 7' € periodo de rotag@o dos corpos.
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Figura 1: Forca newtoniana resultante no problema de trés corpos
idénticos nos vértices de um tridngulo equildtero.

m

2.2 Aproximacao Pds-newtoniana

Agora a interagdo entre os corpos devido a forca
gravitacional newtoniana, como visto na ultima se¢do
acima, devera ser modificada. Tal correcdo, que € uma
das consequéncias da Teoria da Relatividade Geral de
Einstein, € efetivada ao ser incluido uma pequena termo
na for¢a proporcional a 1/r%, ou seja, a nova lei da
forca gravitacional sobre os corpos devem ser dadas
pela forca gravitacional newtoniana, somada a compo-
nente de correcdo relativistica de intensidade dada por

(10)

onde, neste caso, M é a massa do corpo de maior massa,
L ¢é o momento angular do par de corpos em relag@o ao
centro de massa formado por eles, d a distdncia entre
os mesmos e ¢ a velocidade da luz no vacuo (THORN-
TON; MARION| [2011).

Novamente, lembrando que nosso problema estd
restrito a trés corpos de massas iguais nos vértices do
tridngulo equildtero de lado r, entdo a Equacdo (I0)
para este caso, é

_sar

F.. = (1)

2 4

Por outro lado, os momentos angulares no problema
de trés corpos idénticos nos vértices de um tridngulo
equilétero (Figura2)), sdo definidos como

Figura 2: Momento angular do sistema de trés corpos nos vértices
do tridngulo equildtero.

m

*CM

representando o momento angular de cada corpo em re-
lag@o ao centro de massa do sistema, CM, e

1
U= meTQ,

(13)
é o momento angular dos corpos em relagdo ao centro
de massa de cada par, CM’.

Como a correcdio relativistica considera as intera-
¢des aos pares e, conforme sua prépria definicdo, a
mesma € uma forga central, entdo o momento angular
é conservado (THORNTON; MARION| 2011). Assim,
usando o momento angular dado por (I3) em (II)), e
sabendo que a forga de correcdo relativistica € atrativa
entre os corpos do sistema, entdo a resultante vetorial
das forcas de natureza relativistica neste problema, sao
dadas pela seguinte forma

F(l) _ 3\/§ Gm2w2f_
T

Com base nas equagdes (7) e (T4), a forga resultante
na aproximacgdo pdés-newtoniana para cada um dos cor-
pos, € dada pela expressdo

(14)

‘ 2
FO) = —\/3Gm? <1 43w >r (15)

r2  16¢2

Se a forca centripeta e a forca resultante na apro-

ximagdo pds-newtoniana se igualam, entdo, por (15)), a
nova velocidade angular do sistema de particulas, é

3Gm

0 om)

(16)

mostrando que esta expressdo nao satisfaz a Terceira

1
l= gmaﬂ“Q, (12)  Lei de Kepler.
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Por outro lado, observa-se na Equagdo (I6) que se
¢ — 00, isto é, se estamos considerando apenas o for-
malismo newtoniano, entdo o w serd o mesmo da teoria
newtoniana, como apresentado em .

Suponha agora que, numa situacgdo limite, o sistema
se desloca com velocidade linear igual a velocidade da
luz, c. Por conseguinte, novamente por @) o raio da
trajetdria descrita serd chamado de raio critico, e € es-

crito como
25 Gm

16 ¢2 -
Sendo este, aproximadamente, 1,5 vezes maior que o
raio critico newtoniano, a saber

T (17)

vy _ Gm

r 5 (18)

Se cada um dos corpos em atracdo mutua for menor que
0 seu préprio raio de Schwarzschild, rg = 2Gm/ 2,
ou em outras palavras, se forem o que chamamos de
buracos negros, o raio critico serd dado por
25
r = —<Trs.
32
Da expressdo entre parénteses sob a raiz quadrada
em (I6), podemos inferir que hd um segundo raio cri-
tico,

19)

9
32
abaixo do qual a velocidade angular fica imaginéria,
mas como chega a ser menor que o raio critico r1, o
qual por sua vez € menor que o raio de Schwarzschild,
ndo teceremos nenhum comentario a respeito, visto ndo
possuir qualquer significado fisico.

T2 = o513, (20)

3 RESULTADOS E DISCUSSAO

Na Figura [3] representamos a velocidade angular do
sistema de tr€s corpos de massas iguais situados nos
vértices de um tridngulo equildtero, nos casos newtoni-
ano e pés-newtoniano. Na resolucdo deste problema,
consideramos apenas a aproximac¢do de primeira or-
dem, isto &, ndo levamos em conta os efeitos gravita-
cionais devido as velocidades das massas - o chamado
efeito gravitomagnético ou de Lense-Thirring (LENSE;
THIRRING], |1918)), que é muito pequeno.

Percebemos que, qualquer que seja a distancia r en-
tre as massas, a velocidade angular para o caso pds-
newtoniano € maior que para o newtoniano. Isso € es-
perado, pois o termo que corrige a forca newtoniana
tem o mesmo sinal que esta, intensificando-a. Assim,
o sistema precisa girar mais rapidamente para manter
o equilibrio dindmico. Note também que, para grandes

Figura 3: Velocidade angular em funcdo da distincia entre as massas,
para os casos relativistico, wy, € newtoniano, wy,, em unidades tais
que G = ¢ = 1, com m =0,01.

w0l &
rra
-
=0l
100

r

T e am o om

valores de 7, as velocidades angulares nos casos newto-
niano e pés-newtoniano tendem a convergir.

Com relag@o ao raio critico, 71, a Equacao @]) nos
informa que este € menor que o raio de Schwarzschild
pelo fator 25/32. Isto significa que o sistema nfo atin-
gird a velocidade da luz, pois antes disso as massas, se
tiverem um tamanho desprezivel, alcangam uma distan-
cia mutua igual a este raio e o sistema colapsa, assim,
em um unico buraco negro. Cabe observar, entretanto,
que em tal situag@o a aproximacao pds-newtoniana nao
mais se aplica, pois os efeitos relativisticos tornam-se
muito intensos e deve-se usar as equacdes da Relativi-
dade Geral completas para se descrever de forma cor-
reta o sistema, inclusive levando-se em conta que este
deve perder energia na forma de ondas gravitacionais.

Por fim, cabe assinalar que os sistemas estelares tri-
ndrios sdo bastante comuns no Universo, embora aque-
les de massas pelo menos com valores préximos entre
si sejam muito raros. Assim, por exemplo, Alfa Cen-
tauri € o sistema estelar mais préximo do sistema solar,
situado a cerca de 4,37 anos-luz de distancia da Terra,
e é constituido de trés estrelas, duas de massas aproxi-
madamente iguais as do Sol e a terceira (Préxima Cen-
tauri) com cerca de 10% desta (ASIMOV,,|1981)). Para
descrever um sistema assim, vale a abordagem de outro
problema restrito de trés corpos, em que um dos cor-
pos tem massa pequena comparada com a dos outros
dois. E sabido que ha solugdo para este problema, isto
é, é possivel encontrar a 6rbita seguida por cada um dos
corpos isoladamente (GOLDSTEIN; POOLE; SAFKO,
2001). Isto serd objeto de um préximo artigo, onde con-
sideraremos também a aproximac¢do pds-newtoniana.
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4 CONCLUSOES

Neste artigo, estudamos o problema restrito de trés
corpos de massas idénticas situados nos vértices de um
tridngulo equildtero, sofrendo atracdo mutua devida a
interacdo gravitacional. Neste caso, mostramos que a
solucdo para o problema é dada na forma de uma ro-
tacdo constante do sistema em torno do seu centro de
massa, estabelecendo assim um estado de equilibrio di-
namico.

Consideramos, inicialmente, que as massas estao
sujeitas a atragdo gravitacional newtoniana, a qual € in-
versamente proporcional ao quadrado da distancia en-
tre os corpos. Mostramos que a terceira lei de Kepler
aplica-se ao problema, isto é, o quadrado da distancia
entre os corpos ¢ proporcional ao cubo do periodo de
rotacdo orbital. Em seguida, corrigimos a lei da gra-
vitagdo newtoniana por um termo proporcional a 1 /74
que advém da Teoria da Relatividade Geral, na apro-
ximac¢do de campo fraco, chamada de pds-newtoniana.
Encontramos que a velocidade angular, para uma dada
distancia entre os corpos, ¢ maior que no caso newtoni-
ano, uma vez que a corre¢do tem o mesmo sinal que a
forca de gravidade usual, de modo que ela intensifica a
interacdo entre os corpos. Nesta situacao, a terceira lei
de Kepler ndo € mais obedecida, pois a relagdo entre o
periodo de rotacdo e a distincia entre os corpos torna-se
mais complicada.

Calculamos também a distancia critica entre os cor-
pos para a qual o sistema gira com uma velocidade li-
near igual & da luz. Todavia, constatamos que essa dis-
tancia é menor que o raio de Schwarzschild, o que in-
dica que os corpos entram em colapso, fundindo-se em
um buraco negro, antes dessa velocidade ser atingida e
se 0s corpos possuirem dimensdes despreziveis. Uma
andlise mais detalhada e precisa requer o uso das equa-
¢oes completas da Relatividade Geral, uma vez que o
regime ai ndo é mais o de campo fraco, com a aproxi-
magdo pés-newtoniana deixando de valer, portanto.

Como perspectivas futuras, pretendemos resolver o
mesmo problema levando-se em conta o efeito de ar-
raste dos referenciais causado pelo movimento das mas-
sas, contanto que as velocidades destas ndo sejam altas,
compardveis a velocidade da luz. Este efeito é cha-
mado de gravitomagnetismo ou Lense-Thirring, e se-
ria a proxima ordem de corre¢do na aproximacao pds-
newtoniana. Nessa perspectiva, consideramos também
investigar o outro problema restrito de trés corpos, em
que um destes tem massa desprezivel em comparagdo
aos outros dois, 0s quais podem ter massas diferentes,
a exemplo de sistemas estelares bindrios orbitados por
um planeta.
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