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Resumo. Estudamos o problema restrito de três corpos de massas idênticas situados nos vértices de
um triângulo equilátero, interagindo entre si por meio da gravidade. Consideramos, inicialmente, que
as massas estão sujeitas à atração gravitacional newtoniana. Mostramos que os corpos orbitam com
velocidade angular constante em torno do centro de massa do sistema e que a terceira lei de Kepler se
aplica. Em seguida, corrigimos a lei da gravitação acrescentando à força newtoniana um termo propor-
cional a 1/r4, o qual provém da Teoria da Relatividade Geral (TRG), na aproximação de campo fraco,
também chamada de pós-newtoniana. Encontramos que a velocidade angular, para uma dada distância
entre os corpos, é maior que a calculada para o caso newtoniano e que a terceira lei de Kepler não é
mais obedecida. Calculamos também a distância crítica entre os corpos para a qual o sistema gira com
uma velocidade linear igual à da luz. Constatamos que essa distância é menor que os respectivos raios
de Schwarzschild, de modo que, em tal situação, uma análise mais acurada requer o uso das equações
completas da TRG.

Palavras-chaves: Problema dos três corpos. Teoria da Relatividade Geral. Aproximação pós-
newtoniana.

Abstract. We study the restricted problem of three bodies of identical masses located at the vertices of an
equilateral triangle, interacting with one another through gravity. We consider, initially, that the masses
are subject to the Newtonian gravitational pull. We show that the bodies orbit with constant angular
velocity around the center of mass of the system and that Kepler’s third law applies to it. Next, we
correct the gravitation law by adding to the Newtonian force a term proportional to 1/r4, which comes
from the General Relativity Theory (GRT), in the weak-field approximation, also called post-Newtonian.
We find that the angular velocity, for a given distance between the bodies, is greater than that calculated
for the Newtonian case and show that the Kepler’s third law is no longer obeyed. We also calculate the
critical distance between the bodies for which the system rotates with a linear velocity equal to that of
light. We find that this distance is smaller than their Schwarzschild radii, so that a more accurate analysis
requires the use of the complete equations of GRT.

Keywords: Problem of three bodies. Theory of General Relativity. Post-Newtonian approximation.

1 INTRODUÇÃO

Em 1687, na sua obra “Princípios Matemáticos da Fi-
losofia Natural”, Isaac Newton resolveu o problema dos
dois corpos, considerando, exclusivamente, a atração
gravitacional entre ambos (NEWTON, 1687). Ao adici-
onar um corpo à configuração, obtemos o problema dos
três corpos. Logo, solucioná-lo consiste em resolver as

equações que representam o movimento dos três cor-
pos, em um espaço tridimensional, considerando ape-
nas a atração gravitacional mútua (MARTINS; ZANO-
TELLO, 2018). Contudo, o problema é classificado
como não integrável, pois não existem métodos ana-
líticos que expressem as trajetórias dos corpos (YA-
MADA, 2014). Inclusive, em 1890, Poincaré demons-
trou que essa configuração torna-se insolúvel por qua-
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dratura (POINCARÉ, 1890).

No entanto, surgiram algumas situações restritas ou
soluções de equilíbrio que permitem a abordagem do
problema dos três corpos (YAMADA, 2014). Por volta
de 1767, Euler descobriu três situações em que os cor-
pos orbitam ao redor do seu centro de massa em Movi-
mento Circular Uniforme (EULER, 1767). Por sua vez,
em 1772, Lagrange apresentou uma solução específica
para os corpos com massas iguais situados nos vértices
de um triângulo equilátero (LAGRANGE, 1867). Há
casos no sistema solar em que os corpos, no decorrer
de seus movimentos, assumem uma configuração se-
melhante à de um triângulo equilátero como, por exem-
plo, o sistema Asteróides Troianos-Sol-Júpiter e o Lua
Polydeuces-Saturno-Lua Dione (PINTO, 2006). Uma
importante aproximação, conhecida como problema
restrito dos três corpos, considera o sistema em que um
dos corpos possui massa desprezível em relação aos ou-
tros dois que possuem massa finita (GOLDSTEIN; PO-
OLE; SAFKO, 2001). Lagrange definiu cinco pontos
(L1, L2, L3, L4 e L5) que são soluções para essa
configuração, chamados de pontos lagrangeanos ou es-
tacionários (LAGRANGE, 1867).

Por outro lado, no início do século XX, a Física
Clássica não conseguia explicar a radiação do corpo
negro, bem como, algumas concepções do eletromag-
netismo (HORVATH et al., 2011). Por isso, para ex-
plicar o fato de que a luz, enquanto onda eletromag-
nética poderia vagar pelo espaço, inclusive no vácuo,
foi sugerida a existência do éter, um meio que preen-
chia o cosmo e que propagava os efeitos eletromagné-
ticos (WHITTAKER, 1989). Entretanto, o insucesso
do experimento de Michelson-Morley, que visava com-
provar a existência do éter, atrelado a uma série de ou-
tras experiências, culminaram por decretar o declínio do
sistema Newtoniano (THORNTON; MARION, 2011).
Em 1905, abandonando a ideia do éter, em paralelo aos
trabalhos de Poincaré e Lorentz, Albert Einstein estabe-
leceu os postulados fundamentais da Teoria da Relativi-
dade Especial: o princípio da relatividade e o postulado
referente à constância da velocidade da luz (EINSTEIN,
1905). A relatividade especial contempla apenas refe-
renciais inerciais. Estendendo a análise para referenci-
ais acelerados, em 1916, Einstein desenvolveu a Teoria
da Relatividade Geral (EINSTEIN, 1916), que explica a
atração gravitacional como um efeito resultante da cur-
vatura do espaço-tempo, isto é, os corpos massivos dis-
torcem a geometria do espaço circundante, de modo a
que as partículas próximas sigam trajetórias geodésicas
(EINSTEIN, 1999). O tempo é também “distorcido”,
na forma de atrasos nos relógios posicionados próxi-

mos às massas em relação aos situados em locais mais
distantes.

A Teoria da Relatividade Geral, na aproximação de
campo fraco, chamada também de pós-newtoniana, em
que a distorção espaço-temporal é vista apenas como
uma pequena modificação da geometria referente a um
espaço-tempo “plano”, considera que um dos efeitos re-
sultantes em primeira ordem de aproximação é produzir
uma correção na lei da força gravitacional formulada
por Newton, adicionando-se um termo proporcional a
1/r4 (THORNTON; MARION, 2011). No caso do pro-
blema de dois corpos sob mútua atração gravitacional
newtoniana, quando um deles segue uma órbita elíptica
em torno do outro, ao se levar em conta a correção re-
lativística, o eixo maior do que era uma elipse passa a
rotacionar também em torno do centro atrator, de modo
que a trajetória assume uma forma semelhante a de uma
curva rosácea. É interessante mencionar aqui o teorema
de Bertrand, que afirma que dois corpos atraindo-se mu-
tuamente descreverão órbitas limitadas e fechadas ape-
nas para uma força proporcional ao inverso do quadrado
da distância (gravidade newtoniana) ou proporcional à
distância entre eles (como no oscilador harmônico tri-
dimensional) (THORNTON; MARION, 2011). A força
que descrevemos neste trabalho, com um termo pertur-
bativo do tipo 1/r4, portanto, não se enquadra no refe-
rido teorema e a órbita é aberta, precessionando.

Nesse contexto, nosso trabalho objetiva analisar o
problema do equilíbrio dinâmico de sistemas formados
por três massas iguais, situadas nos vértices de um tri-
ângulo equilátero. Inicialmente, revemos o problema
do ponto de vista da Gravitação Universal Newtoniana,
considerando esta como a responsável pela atração mú-
tua entre os corpos. Posteriormente, incluímos a cor-
reção referente à aproximação pós-newtoniana, decor-
rente da Teoria da Relatividade Geral. Calcularemos,
assim, nos dois casos, a velocidade angular do sistema
para a qual ocorre o equilíbrio dinâmico entre as mas-
sas, comparando-as entre si. No caso relativístico, uma
distância crítica entre as massas também será obtida,
para a qual a velocidade linear de rotação dos corpos
torna-se igual à velocidade da luz. Uma discussão so-
bre a terceira lei de Kepler também é realizada.

É válido ressaltar que as dez equações de campo da
Teoria da Relatividade Geral, as quais relacionam a ge-
ometria do espaço-tempo com o seu conteúdo de ma-
téria e energia, são altamente não lineares, deixando de
valer, no caso geral, o princípio de superposição. No en-
tanto, tal princípio é utilizado neste trabalho, uma vez
que na aproximação de campo fraco tais equações po-
dem ser linearizadas, podendo ser inclusive escritas na

Conex. Ci. e Tecnol. Fortaleza/CE, v.13, n. 4, p. 30 - 36, dez. 2019
Artigo submetido em 10 dez. 2019 e aceito em 22 dez. 2019

31



forma das equações de Maxwell do Eletromagnetismo.
(MASHHOON, 2007).

O trabalho está organizado da seguinte forma: na
Seção 2, analisamos o problema dos três corpos de
massas iguais do ponto de vista newtoniano e pós-
newtoniano; na Seção 3, os resultados são discutidos
e na Seção 4, fechamos o artigo com as conclusões.

2 PROBLEMA DE TRÊS CORPOS IDÊNTICOS
NOS VÉRTICES DE UM TRIÂNGULO EQUI-
LÁTERO

Um dos principais problemas estudados na mecânica
celeste é determinar o equilíbrio dinâmico dos corpos
quando estes interagem gravitacionalmente entre si. Is-
sac Newton, o primeiro a formular o problema de n cor-
pos em 1687, propôs uma configuração na qual os cor-
pos são esferas perfeitas e a atração mútua ocorra como
se toda a massa dos corpos estivessem concentrada em
seu centro de massa. Para esses tipos de sistemas de n
corpos, sujeitos apenas às ações das forças gravitacio-
nais newtonianas, chama-se problema newtoniano de n
corpos.

2.1 Abordagem Newtoniana

O problema newtoniano restrito de três corpos, so-
lucionado por Joseph Lagrange em 1772 , consiste em
três corpos nos vértices de um triângulo equilátero inte-
ragindo mutuamente por ação gravitacional (DANBY,
1992). Considere, inicialmente, três corpos de mas-
sas finitas m1, m2 e m3 distribuidas nos vértices de
um triângulo equilátero de lado r. Assim, pelas leis de
Newton, as equações de movimento sobre cada um dos
corpos são dadas por

m1r̈1 = −Gm1m2

r312
r12 −

Gm1m3

r313
r13;

m2r̈2 = −Gm2m1

r321
r21 −

Gm2m3

r323
r23;

m3r̈3 = −Gm3m1

r331
r31 −

Gm3m2

r332
r32;

(1)

onde r̈i é a aceleração do i-ésimo corpo em relação ao
centro de massa do sistema, G é a constante gravitaci-
onal e rij = ri − rj é o deslocamento relativo entre os
corpos com rij = −rji para i, j ∈ {1, 2, 3} e i 6= j.
Somando as equações (1), tem-se

m1r̈1 +m2r̈2 +m3r̈3 = 0, (2)

ou seja, a resultante das forças internas (gravitacionais)
é nula e, como não há forças externas, o centro de massa

do sistema está em repouso ou desloca-se em linha reta
com velocidade constante com relação ao referencial
inercial considerado. Então, suponha que o centro de
massa da configuração de partículas coincida com a ori-
gem do sistema de coordenadas. Além disso, como os
corpos estão nos vértices do triângulo equilátero, então

r21 = r13 = r32 = r. (3)

Consequentemente, por (2) e (3), a distância dos corpos
em relação ao centro de massa do sistema deve ser

ri =
r

M

√
m2

j +mjmk +m2
k, (4)

na qual i, j, k ∈ {1, 2, 3}, com i 6= j 6= k, e M =
(m1 +m2 +m3).

As equações (1), (2) e (3) implicam que as resultan-
tes das forças sobre cada uma das massas do sistema,
são

mir̈i = −
GMmi

r3
ri. (5)

Em particular, quando se têm três corpos de mesma
massa, m, nos vértices de um triângulo equilátero de
lado r, as equações (4) e (5) devem ser reescritas, res-
pectivamente, como

ri =

√
3

3
r, (6)

ou seja, o centro de massa encontra-se no baricentro do
triângulo, e

F(i)
N = −

√
3
Gm2

r2
r̂i, (7)

onde F(i)
N é a força newtoniana resultante sobre cada um

dos corpos na direção do vetor unitário r̂i, conforme a
Figura 1.

A partir da Equação (7), pode-se afirmar que esta
força resultante tende a se igualar à força centrípeta para
manter o equilíbrio dinâmico do movimento. Assim, a
velocidade angular newtoniana da configuração de par-
tículas em relação ao centro de massa do sistema, será

ω =

√
3Gm

r3
. (8)

Por fim, a partir da expressão (8), vale afirmar que o
movimento orbital do sistema, formado por três corpos
de massas iguais nos vértices de um triângulo equilá-
tero, satisfaz a conhecida Terceira Lei de Kepler (NUS-
SENZVEIG, 2002), ou seja,

T 2

4π2
=

r3

3Gm
, (9)

onde T é período de rotação dos corpos.
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Figura 1: Força newtoniana resultante no problema de três corpos
idênticos nos vértices de um triângulo equilátero.

2.2 Aproximação Pós-newtoniana

Agora a interação entre os corpos devido a força
gravitacional newtoniana, como visto na última seção
acima, deverá ser modificada. Tal correção, que é uma
das consequências da Teoria da Relatividade Geral de
Einstein, é efetivada ao ser incluído uma pequena termo
na força proporcional a 1/r4, ou seja, a nova lei da
força gravitacional sobre os corpos devem ser dadas
pela força gravitacional newtoniana, somada a compo-
nente de correção relativística de intensidade dada por

Fcr =
3GM

mc2
L2

d4
, (10)

onde, neste caso,M é a massa do corpo de maior massa,
L é o momento angular do par de corpos em relação ao
centro de massa formado por eles, d a distância entre
os mesmos e c a velocidade da luz no vácuo (THORN-
TON; MARION, 2011).

Novamente, lembrando que nosso problema está
restrito a três corpos de massas iguais nos vértices do
triângulo equilátero de lado r, então a Equação (10)
para este caso, é

Fcr =
3G

c2
L2

r4
. (11)

Por outro lado, os momentos angulares no problema
de três corpos idênticos nos vértices de um triângulo
equilátero (Figura 2), são definidos como

l =
1

3
mωr2, (12)

Figura 2: Momento angular do sistema de três corpos nos vértices
do triângulo equilátero.

representando o momento angular de cada corpo em re-
lação ao centro de massa do sistema, CM, e

l′ =
1

4
mωr2, (13)

é o momento angular dos corpos em relação ao centro
de massa de cada par, CM’.

Como a correção relativística considera as intera-
ções aos pares e, conforme sua própria definição, a
mesma é uma força central, então o momento angular
é conservado (THORNTON; MARION, 2011). Assim,
usando o momento angular dado por (13) em (11), e
sabendo que a força de correção relativística é atrativa
entre os corpos do sistema, então a resultante vetorial
das forças de natureza relativística neste problema, são
dadas pela seguinte forma

F(i)
cr = −3

√
3

16

Gm2ω2

c2
r̂i. (14)

Com base nas equações (7) e (14), a força resultante
na aproximação pós-newtoniana para cada um dos cor-
pos, é dada pela expressão

F(i) = −
√
3Gm2

(
1

r2
+

3ω2

16c2

)
r̂i. (15)

Se a força centrípeta e a força resultante na apro-
ximação pós-newtoniana se igualam, então, por (15), a
nova velocidade angular do sistema de partículas, é

ω =

√
3Gm

r3
(
1− 9Gm

16rc2

) , (16)

mostrando que esta expressão não satisfaz a Terceira
Lei de Kepler.
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Por outro lado, observa-se na Equação (16) que se
c → ∞, isto é, se estamos considerando apenas o for-
malismo newtoniano, então o ω será o mesmo da teoria
newtoniana, como apresentado em (8).

Suponha agora que, numa situação limite, o sistema
se desloca com velocidade linear igual à velocidade da
luz, c. Por conseguinte, novamente por (16), o raio da
trajetória descrita será chamado de raio crítico, e é es-
crito como

r1 =
25

16

Gm

c2
. (17)

Sendo este, aproximadamente, 1, 5 vezes maior que o
raio crítico newtoniano, a saber

r
(N)
1 =

Gm

c2
. (18)

Se cada um dos corpos em atração mútua for menor que
o seu próprio raio de Schwarzschild, rS = 2Gm/c2,
ou em outras palavras, se forem o que chamamos de
buracos negros, o raio crítico será dado por

r1 =
25

32
rS . (19)

Da expressão entre parênteses sob a raiz quadrada
em (16), podemos inferir que há um segundo raio crí-
tico,

r2 =
9

32
rS , (20)

abaixo do qual a velocidade angular fica imaginária,
mas como chega a ser menor que o raio crítico r1, o
qual por sua vez é menor que o raio de Schwarzschild,
não teceremos nenhum comentário a respeito, visto não
possuir qualquer significado físico.

3 RESULTADOS E DISCUSSÃO

Na Figura 3 representamos a velocidade angular do
sistema de três corpos de massas iguais situados nos
vértices de um triângulo equilátero, nos casos newtoni-
ano e pós-newtoniano. Na resolução deste problema,
consideramos apenas a aproximação de primeira or-
dem, isto é, não levamos em conta os efeitos gravita-
cionais devido às velocidades das massas - o chamado
efeito gravitomagnético ou de Lense-Thirring (LENSE;
THIRRING, 1918), que é muito pequeno.

Percebemos que, qualquer que seja a distância r en-
tre as massas, a velocidade angular para o caso pós-
newtoniano é maior que para o newtoniano. Isso é es-
perado, pois o termo que corrige a força newtoniana
tem o mesmo sinal que esta, intensificando-a. Assim,
o sistema precisa girar mais rapidamente para manter
o equilíbrio dinâmico. Note também que, para grandes

Figura 3: Velocidade angular em função da distância entre as massas,
para os casos relativístico, ωr , e newtoniano, ωn, em unidades tais
que G = c = 1, com m =0,01.

valores de r, as velocidades angulares nos casos newto-
niano e pós-newtoniano tendem a convergir.

Com relação ao raio crítico, r1, a Equação (19) nos
informa que este é menor que o raio de Schwarzschild
pelo fator 25/32. Isto significa que o sistema não atin-
girá a velocidade da luz, pois antes disso as massas, se
tiverem um tamanho desprezível, alcançam uma distân-
cia mútua igual a este raio e o sistema colapsa, assim,
em um único buraco negro. Cabe observar, entretanto,
que em tal situação a aproximação pós-newtoniana não
mais se aplica, pois os efeitos relativísticos tornam-se
muito intensos e deve-se usar as equações da Relativi-
dade Geral completas para se descrever de forma cor-
reta o sistema, inclusive levando-se em conta que este
deve perder energia na forma de ondas gravitacionais.

Por fim, cabe assinalar que os sistemas estelares tri-
nários são bastante comuns no Universo, embora aque-
les de massas pelo menos com valores próximos entre
si sejam muito raros. Assim, por exemplo, Alfa Cen-
tauri é o sistema estelar mais próximo do sistema solar,
situado a cerca de 4,37 anos-luz de distância da Terra,
e é constituído de três estrelas, duas de massas aproxi-
madamente iguais às do Sol e a terceira (Próxima Cen-
tauri) com cerca de 10% desta (ASIMOV, 1981). Para
descrever um sistema assim, vale a abordagem de outro
problema restrito de três corpos, em que um dos cor-
pos tem massa pequena comparada com a dos outros
dois. É sabido que há solução para este problema, isto
é, é possível encontrar a órbita seguida por cada um dos
corpos isoladamente (GOLDSTEIN; POOLE; SAFKO,
2001). Isto será objeto de um próximo artigo, onde con-
sideraremos também a aproximação pós-newtoniana.
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4 CONCLUSÕES

Neste artigo, estudamos o problema restrito de três
corpos de massas idênticas situados nos vértices de um
triângulo equilátero, sofrendo atração mútua devida à
interação gravitacional. Neste caso, mostramos que a
solução para o problema é dada na forma de uma ro-
tação constante do sistema em torno do seu centro de
massa, estabelecendo assim um estado de equilíbrio di-
nâmico.

Consideramos, inicialmente, que as massas estão
sujeitas à atração gravitacional newtoniana, a qual é in-
versamente proporcional ao quadrado da distância en-
tre os corpos. Mostramos que a terceira lei de Kepler
aplica-se ao problema, isto é, o quadrado da distância
entre os corpos é proporcional ao cubo do período de
rotação orbital. Em seguida, corrigimos a lei da gra-
vitação newtoniana por um termo proporcional a 1/r4

que advém da Teoria da Relatividade Geral, na apro-
ximação de campo fraco, chamada de pós-newtoniana.
Encontramos que a velocidade angular, para uma dada
distância entre os corpos, é maior que no caso newtoni-
ano, uma vez que a correção tem o mesmo sinal que a
força de gravidade usual, de modo que ela intensifica a
interação entre os corpos. Nesta situação, a terceira lei
de Kepler não é mais obedecida, pois a relação entre o
período de rotação e a distância entre os corpos torna-se
mais complicada.

Calculamos também a distância crítica entre os cor-
pos para a qual o sistema gira com uma velocidade li-
near igual à da luz. Todavia, constatamos que essa dis-
tância é menor que o raio de Schwarzschild, o que in-
dica que os corpos entram em colapso, fundindo-se em
um buraco negro, antes dessa velocidade ser atingida e
se os corpos possuírem dimensões desprezíveis. Uma
análise mais detalhada e precisa requer o uso das equa-
ções completas da Relatividade Geral, uma vez que o
regime aí não é mais o de campo fraco, com a aproxi-
mação pós-newtoniana deixando de valer, portanto.

Como perspectivas futuras, pretendemos resolver o
mesmo problema levando-se em conta o efeito de ar-
raste dos referenciais causado pelo movimento das mas-
sas, contanto que as velocidades destas não sejam altas,
comparáveis à velocidade da luz. Este efeito é cha-
mado de gravitomagnetismo ou Lense-Thirring, e se-
ria a próxima ordem de correção na aproximação pós-
newtoniana. Nessa perspectiva, consideramos também
investigar o outro problema restrito de três corpos, em
que um destes tem massa desprezível em comparação
aos outros dois, os quais podem ter massas diferentes,
a exemplo de sistemas estelares binários orbitados por
um planeta.
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