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Resumo. Em conjunto com o desvio da luz de estrelas distantes pelo campo gravitacional do Sol (com-
provado através de observações durante o eclipse solar de 1919), e do desvio para o vermelho na frequên-
cia de um feixe de luz pela ação de um campo gravitacional (comprovado pelo experimento de Pound e
Rebka realizado em 1960), o movimento secular do periélio de Mercúrio configura-se num dos chama-
dos “testes clássicos" da teoria da relatividade geral (TRG) de Albert Einstein. Em particular, o cálculo
do movimento anômalo de Mercúrio foi a primeira peça de evidência empírica que ajudou a estabelecer
a TRG como uma das mais belas teorias da física. Em 1915, Einstein incluiu esse cálculo, como uma
aplicação, no artigo em que apresentou a sua teoria de gravitação. O valor obtido através da TRG con-
tribuiu para dar confiança à nova teoria através de um problema empiricamente testável e que, na sua
primeira aplicação, resolvia um dos maiores problemas da mecânica celeste à época. Neste trabalho,
descrevemos os aspectos históricos relacionados aos estudos sobre os movimentos dos planetas. Em
particular, discutimos como o movimento anômalo de Mercúrio foi analisado no âmbito da mecânica
clássica, comparando a previsão clássica com os dados observacionais estabelecidos naquele período.
Finalmente, comparamos a resposta clássica ao movimento anômalo de Mercúrio com o valor obtido
através da TRG – o primeiro sucesso da teoria de gravitação de Einstein.

Palavras-chaves: Teoria da Relatividade Geral. Mecânica Celeste. Avanço no Periélio de Mercúrio.

Abstract. Together with the deflexion of the light from distant stars by the gravitational field of the Sun
(as evidenced by observations during the solar eclipse of 1919), and the redshift in the frequency of a light
beam by the action of a gravitational field (as verified by the experiment carried out by Pound and Rebka
in 1960), the secular motion of the perihelion of Mercury is one of the so-called “classical tests" of Albert
Einstein’s theory of general relativity (TGR). In particular, the calculation of the anomalous motion of
Mercury was the first piece of empirical evidence to help establish TGR as one of the most beautiful
theories of physics. In 1915, Einstein included this calculation as an application in the article in which
he presented his theory of gravitation. The value obtained via TGR contributed to give confidence to
the new theory through an empirically testable problem and that, in its first application, solved one of
the major problems of celestial mechanics. In this work, we describe the historical aspects related to the
studies on the motions of planets. In particular, we discuss how the anomalous motion of Mercury was
analyzed in the scope of classical mechanics comparing the classical prediction with the observational
data established at that time. Finally, we compare the classical response to the anomalous motion of
Mercury with the value obtained through TGR – the first success of the Einstein’s gravitation theory.

Keywords: Theory of General Relativity. Celestial Mechanics. Perihelion of Mercury Advance.

1 INTRODUÇÃO

Historicamente, os primeiros estudos relacionados ao
movimento planetário têm suas raízes na antiga Me-

sopotâmia, região hoje compreendida pelo Iraque, em
sua totalidade, e partes da Síria, Irã, Líbano e Turquia.
Tábuas de argila com registros em escrita cuneiforme
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de 2.000 a.C. revelam um rico conhecimento astronô-
mico pelos povos que habitaram essa região (NEUGE-
BAUER, 1975; NEUGEBAUER, 1983; LAMBERT,
1987; EVANS, 1998). As 12 constelações zodiacais,
chamadas de “rebanho brilhante" por esses povos, ob-
servações de estrelas e dos planetas Mercúrio, Vênus,
Marte, Júpiter e Saturno estão registradas em tábuas de
argila produzidas na “Baixa Mesopotâmia" (Suméria)
dentro desse período.

Com a consolidação do império grego estendendo-
se até o mar Negro, por volta de V a.C., é provável que o
conhecimento astronômico da Mesopotâmia tenha sido
absorvido pela Grécia antiga. Eudoxo de Cnido, que
viveu na Ásia Menor no século IV a.C., deixou regis-
tros que mostram a importância dos “astrônomos ba-
bilônios" sobre o seu trabalho em astronomia. Eudoxo,
além de brilhante matemático, concentrou-se principal-
mente no estudo dos movimentos aparentes dos plane-
tas.

Os planetas mais afastados se movem de leste
para oeste, mas ocasionalmente parecem retroceder
movendo-se de oeste para leste. Eudoxo acreditava no
modelo Geocêntrico, de forma que idealizou um sofis-
ticado esquema para explicar essas irregularidades nos
movimentos dos planetas e da Lua. O termo “plane-
tas" vem do grego πλανηται que significa “estrelas
indisciplinadas" (ou errantes).

Por volta do ano 280 a.C. Aristarco, nascido na ilha
de Samos no mar Egeu Oriental, foi o primeiro astrô-
nomo a propor que a Terra girava ao redor do Sol (mo-
delo Heliocêntrico). Contudo, suas ideias foram rejei-
tadas em favor do modelo Geocêntrico. A concepção
de Aristarco somente foi retomada depois de decorri-
dos dezoito séculos, em plena idade média.

No século XIII, os trabalhos dos astrônomos gregos
chegaram ao mundo ocidental através de traduções pre-
servadas pelos árabes (NEUGEBAUER, 1975; NEU-
GEBAUER, 1983).

Um jovem astrônomo polonês de nome Nicolau Co-
pérnico identificou, a partir dessas traduções, que o mo-
delo mais simples e elegante, para explicar os movi-
mentos dos planetas, consistia em que estes descreves-
sem órbitas circulares ao redor do Sol. No ano da sua
morte, em 1543, as suas conclusões foram publicadas
no livro De revolutionibus orbium coelestium.

A contribuição seguinte ao estudo dos movimentos
planetários foi dada pelas numerosas observações rea-
lizadas pelo astrônomo dinamarquês Tycho Brahe, nas-
cido três anos após a publicação do livro de Copérnico.

Tycho não aceitava completamente o modelo de Co-
pérnico. Corretamente, ele considerava que a Lua orbi-
tava a Terra e que os planetas orbitavam o Sol. Contudo,

erroneamente, seu sistema considerava o Sol orbitando
a Terra.

Porém, as observações que ele realizou, ao longo
de vários anos, permitiram ao seu assistente, chamado
Johannes Kepler, concluir que o modelo de Copérnico
se ajustava muito bem aos dados observacionais desde
que as órbitas planetárias circulares fossem substituídas
por elipticas.

As conclusões de Kepler podem ser resumidas em
suas três bem conhecidas leis do movimento planetário:

• A órbita de um planeta é uma elipse com o Sol em
um dos seus focos;

• A linha que une o Sol a um planeta varre áreas
iguais em intervalos iguais de tempo, independen-
temente do comprimento da linha;

• O quadrado do período (P ) de qualquer planeta é
proporcional ao cubo da sua distância média (R)
ao Sol, ou seja, P 2 = k R3. A constante k é a
mesma para todos os planetas.

Com as leis de Kepler, originalmente publicadas no
período 1609 a 1619, a teoria Heliocêntrica passou a
ser vista como um modelo de funcionamento do sistema
solar.

Por outro lado, Galileo Galilei, nascido em 1564, foi
fundamental para o avanço do método científico, tanto
em métodos de observação quanto de experimentação.
Embora Galileo não tenha inventado o telescópio, ele
talvez tenha sido o primeiro a fazer uso sistemático
desse instrumento para observações.

Através do telescópio, ele identificou as quatro
grandes luas de Júpiter. Isso possibilitou fazer uma ana-
logia direta entre o sistema Terra–Lua com outros cor-
pos do sistema solar. Galileo também demonstrou que
as diferentes fases do planeta Vênus poderiam ser ex-
plicadas se esse planeta girasse ao redor do Sol.

Isaac Newton, nascido um ano após a morte de Ga-
lileo Galilei (ocorrida em 1642), trouxe uma nova per-
cepção sobre os movimentos planetários. Newton de-
monstrou que a força de atração gravitacional entre dois
corpos varia de forma inversamente proporcional ao
quadrado da distância de separação e é diretamente pro-
porcional ao produto das massas dos corpos envolvidos,
que hoje chamamos de lei da gravitação de Newton.

O seu livro, cujo título original é Philosophiae Na-
turalis Principia Mathematica, publicado em 1687, é
um marco extraordinário em ciências naturais. Contém
as leis para o movimento dos corpos, a fundamentação
da mecânica clássica, assim como a lei da gravitação
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universal 1.
Para poder demonstrar que a força de atração gra-

vitacional, entre dois corpos, poderia ser determinada
considerando que a massa de cada corpo concentrava-
se num ponto central, Newton precisou desenvolver um
ramo inteiramente novo da matemática, que hoje cha-
mamos de cálculo diferencial e integral.

Newton generalizou as hipóteses da força gravitaci-
onal, explicando as leis de Kepler do movimento plane-
tário, bem como explicando através da sua lei “univer-
sal" da gravitação como pares de partículas interagiam
no Universo.

No século XVIII, o astrônomo William Herschel
descobriu que sistemas binários, isto é, “estrelas du-
plas" em que uma estrela orbita o redor da outra, obe-
deciam à lei de gravitação de Newton, da mesma forma
que os planetas do sistema solar. Herschel tornou-se um
astrônomo famoso por ter descoberto o planeta Urano
em 1781.

Ele buscava identificar sistemas estelares binários,
mas no dia 13 de março, Herschel identificou um pe-
queno ponto luminoso no céu, que inicialmente parecia
um cometa. Após acompanhar o objeto por algumas
semanas, ele conseguiu identificar que tratava-se de um
planeta – Urano – com órbita mais distante que Saturno.
O sistema solar ganhava assim mais um planeta em re-
lação aos que eram conhecidos desde a Mesopotâmia.

No início do século XIX, existiam diferentes mé-
todos matemáticos para previsão dos movimentos dos
planetas. Estes haviam sido desenvolvidos ao longo de
várias décadas por diferentes astrônomos. Em 1839,
o astrônomo francês Urbain-Jean-Joseph Le Verrier
concentrou-se no cálculo preciso das órbitas planetá-
rias.

Mercúrio é o planeta mais próximo do Sol, possui
curto período de translação e elevada excentricidade de
órbita. Isso fez com que Le Verrier começasse, por volta
de 1841, a analisar com mais atenção a órbita desse pla-
neta, procurando determiná-la com precisão.

Os seus primeiros trabalhos sobre o cálculo da ór-
bita de Mercúrio foram publicados em 1843 mas com
um resultado que o próprio Le Verrier considerava
insatisfatório (LE-VERRIER, 1843a; LE-VERRIER,
1843b).

Le Verrier deixou Mercúrio de lado e passou a
concentrar a atenção sobre Urano. Ele trabalhou du-
rante vários meses em complexos cálculos para expli-
car as pequenas discrepâncias entre a órbita observada
de Urano e aquela prevista pelas leis de Newton. Em

1Recomendo aos interessados a versão em língua portuguesa pu-
blicada pela Editora da Universidade de São Paulo (NEWTON,
2008a; NEWTON, 2008b).

31 de agosto de 1846, Le Verrier apresentou sua aná-
lise final à Academia Francesa de Ciências, prevendo
que as pequenas discrepâncias na órbita de Urano eram
ocasionadas por um “planeta invisível".

Ele encaminhou carta a Johann Galle, do Observa-
tório de Berlim, com a órbita prevista para o “novo pla-
neta". A carta chegou em 23 de setembro de 1846 e na
mesma noite Galle e o astrônomo Heinrich d’Arrest en-
contraram o “planeta de Le Verrier" – Netuno – dentro
da área prevista por esse astrônomo 2.

Com o sucesso alcançado a partir da descoberta de
Netuno, Le Verrier assumiu a tarefa de colocar em har-
monia todo o sistema planetário. Caso não fosse possí-
vel explicar com precisão os dados observacionais, en-
tão ainda existiriam causas desconhecidas de perturba-
ções gravitacionais (LéVY, 1968).

Ele começou então por reavaliar, até a 7a ordem,
as perturbações planetárias conhecidas. Essa derivação,
que resultou em 469 termos matemáticos, foi concluída
em 1849. Em seguida, ele coletou observações das
posições dos planetas (dados observacionais de 1750),
avaliando-os e corrigindo as inconsistências com os da-
dos mais recentes. Isso o ocupou pelos anos seguintes.

Em 1859, Le Verrier retoma o estudo sobre o movi-
mento de Mercúrio. Examinando os registros dos trân-
sitos desse planeta, ele concluiu que a órbita precessi-
onava lentamente. Em princípio, resultado natural se a
influência dos demais planetas fosse levada em conta.

A precessão observada era de 565 segundos de arco
por século. Le Verrier obteve a partir dos seus cálculos
o valor de 526,7 segundos de arco por século.

Essa diferença de 38, 3” por século 3 entre os dois
valores, aparentemente, não podia ser absorvida pela te-
oria Newtoniana de gravitação através dos métodos per-
turbativos desenvolvidos por Le Verrier.

Os incrementos esperados para a órbita de Mercú-
rio, a partir de cada um dos planetas que Le Verrier uti-
lizou em seus cálculos, forneciam por século:

• Vênus: 280, 6”

• Terra: 83, 6”

• Marte: 2, 6”

• Júpiter: 152, 6”

• Saturno: 7, 2”

• Urano: 0, 1”

2O inglês John Couch Adams trabalhou de forma independente de
Le Verrier sobre as discrepâncias na órbita de Urano. Adams encami-
nhou sua solução ao Royal Greenwich Observatory dois dias após a
comunicação de Le Verrier à Academia Francesa.

3O símbolo ” representa segundos de arco.
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Vênus, vizinho mais próximo de Mercúrio, é o prin-
cipal culpado pelo movimento anômalo, mas os outros
planetas também contribuem em maior ou menor grau.
Note que Júpiter, planeta mais massivo do sistema so-
lar, contribui com quase 30 por cento da taxa de avanço
do periélio de Mercúrio, apesar de sua grande distância
do Sol.

As perturbações planetárias levam a uma taxa de
avanço do periélio de Mercúrio de 1, 27” por órbita ou,
aproximadamente, 527” por século 4.

Em função dessa diferença de 38, 3” e motivado
pelo sucesso da descoberta de Netuno, Le Verrier infe-
riu que um aumento de aproximadamente 10 por cento
na massa de Vênus explicaria o avanço do periélio de
Mercúrio, mas esse incremento de massa também afe-
taria a órbita da Terra de uma maneira que não havia
sido observada até então.

Como a “massa faltante" não deveria afetar a órbita
da Terra, Le Verrier inferiu que ela deveria estar mais
perto do Sol do que a órbita de Mercúrio. Assim come-
çou a busca ao “novo planeta invisível" de Le Verrier,
ou melhor, aos “planetas invisíveis".

Ele rapidamente percebeu que um único planeta tão
perto do Sol teria um enorme brilho e, portanto, seria vi-
sível durante os eclipses solares. Como nenhum planeta
desse tipo havia sido observado durante eclipses passa-
dos, Le Verrier supôs que a massa estaria na forma de
muitos corpos pequenos.

Contudo, em dezembro de 1859, Le Verrier rece-
beu uma surpreendente comunicação do médico fran-
cês, e astrônomo amador, Edmond Modeste Lescarbault
da vila de Orgères-en-beauce na França. Lescarbault in-
formava que havia registrado observações durante o que
ele acreditava ser um trânsito de um “planeta intermer-
curial".

Le Verrier, convencido pela história, divulgou a no-
tícia do novo planeta, que foi rapidamente denominado
de Vulcano – o deus do fogo na mitologia romana. Ele
havia, novamente, encantado a comunidade científica
francesa. A dupla formada por Isaac Newton e Urbain-
Jean-Joseph Le Verrier novamente triunfou, ao menos
era o que parecia.

Com base nas observações de Lescarbault, Le Ver-
rier calculou a distância do planeta em relação ao Sol,
obtendo 0,147 unidades astronômicas, e determinou seu
período como sendo 19 dias e 17 horas (BAUM; SHE-
EHAN, 1997). A comunidade astronômica tentou re-

4Mercúrio completa uma órbita ao redor do Sol em, aproximada-
mente, 88 dias. Um ano terrestre equivale a 365,26 dias de forma que
em 100 anos temos 36.526 dias. O número de órbitas de Mercúrio
em 100 anos é 36.526/88 ≈ 415. Assim, a cada órbita Mercúrio
avança seu periélio em 527/415 ≈ 1, 27”, conforme a estimativa de
Le Verrier.

petidamente observar o evasivo planeta Vulcano, mas,
com o passar do tempo, sem nenhum avistamento, co-
meçaram a surgir dúvidas quanto à existência desse pla-
neta.

Com tanta atenção direcionada para observar a área
ao redor do Sol durante os eclipses subsequentes, e sem
ao menos uma observação positiva, a grande maioria
dos astrônomos deixou de acreditar na existência de
Vulcano.

Até sua morte, em 1877, Le Verrier permaneceu to-
talmente convencido de que a “massa faltante" existia
e que eventualmente seria encontrada, mostrando mais
uma vez a supremacia da lei da gravitação de Newton 5.

Em 1882, o astrônomo Simon Newcomb corrigiu al-
gumas inconsistências na massa planetária e repetiu os
cálculos de Le Verrier. Ele descobriu um deslocamento
extra no periélio de Mercúrio de 43” por século (NEW-
COMB, 1882), um pouco maior que o resultado ante-
riormente obtido. Os dados observacionais analisados
por Newcomb mostravam que a precessão de Mercúrio
era de 574, 83” por século (NEWCOMB, 1898).

Como a “massa faltante" estava, a essa altura, fora
de questão, ele pensou que o problema poderia estar na
lei da gravitação de Newton. Newcomb ponderou que
se o expoente, na lei do inverso do quadrado da distân-
cia, fosse 2,00000016 ao invés de 2, então o movimento
de Mercúrio poderia ser explicado com maior precisão.

O raciocínio de Newcomb representou uma verda-
deira mudança de paradigma. Enquanto, anteriormente,
as observações eram questionadas e a teoria de Newton
era inatacável, os cientistas ao final do século XIX co-
meçavam a questionar as fundações da lei de gravitação
clássica.

Do ponto de vista observacional, o problema estava,
essencialmente, fechado. Em contraste, o que existiria
de “errado" com a lei da gravitação de Newton passou
a ser considerado um problema em aberto. Estavam ge-
radas as condições para que surgisse uma nova teoria
de gravitação – A Teoria da Relatividade Geral de Eins-
tein.

Na Seção 2 apresento o “cálculo clássico" para o
avanço do periélio de Mercúrio, enquanto na Seção 3 ,
apresento os principais conceitos envolvidos com a de-
terminação da anomalia desse planeta no âmbito da
TRG de Einstein. A Seção 4 apresenta as considera-
ções finais deste trabalho.

5Um interessante texto biográfico sobre Urbain-Jean-Joseph Le
Verrier pode ser encontrado no artigo de Laskar (2017).
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2 Precessão do Periélio de Mercúrio: Aborda-
gem Clássica

No âmbito da mecânica clássica de Newton é possível,
precisamente, modelar a força gravitacional que cada
planeta deveria exercer sobre Mercúrio. Uma aproxi-
mação que considero bastante elegante, e acessível, foi
publicada em 1979 (PRICE; RUSH, 1979).

Os autores substituíram cada um dos planetas ex-
ternos a Mercúrio por “anéis de massa" , cada um
caracterizado por sua respectiva densidade linear de
massa uniforme. Como Mercúrio apresenta lenta pre-
cessão, quando comparada com as órbitas planetárias
até Urano, a abordagem de Price e Rush produz uma
estimativa bastante precisa para descrever os efeitos dos
planetas externos sobre a órbita de Mercúrio.

Como mencionado acima, cada planeta é substi-
tuído por um anel com densidade linear de massa des-
crita pela seguinte equação:

λi =
Mi

2πRi
, (1)

sendo λi a densidade linear de massa do i-ésimo planeta
a partir do Sol, Mi a massa do i-ésimo planeta e Ri o
raio da órbita, que é considerada circular.

O campo gravitacional de cada planeta exterior a
Mercúrio é aproximado como um anel circular, e uni-
forme, centrado no Sol e no plano definido pela órbita
de Mercúrio, conforme Figura 1 . Um ponto de massa
m está colocado sobre a linha ABC e a distância a do
centro C do anel de raio R.

Figura 1: Forma como as forças gravitacionais são calculadas sobre
a massa m, que está situada à distância a do centro de um anel com
densidade linear uniforme de massa (λi). Figura adaptada pelo autor
a partir da original publicada em Price e Rush (1979).

O anel é dividido em elementos diferenciais de
massa. Em particular, a Figura 1 mostra os elementos

dm1 e dm2 que estão localizados num ângulo α da li-
nha AB. Considere ds1 e ds2 os arcos subentendidos
pelo elemento diferencial angular dα e que estão, res-
pectivamente, associados com os elementos de massa
dm1 e dm2. Então podemos escrever, se a << R

dmi = λ dsi ' λlidα, (2)

onde li é a distância de m ao anel (vide Figura 1 ) e i
pode assumir os valores 1 ou 2.

A lei da gravitação de Newton permite então escre-
ver

dF = Gm

(
dm1

l21
− dm2

l22

)
l̂, (3)

sendo l̂ um vetor unitário ligando m a dm1.
Substituindo a Equação 2 na 3 vem

dF = Gmλ

(
l2 − l1
l1l2

)
l̂ dα. (4)

Por simetria, os únicos componentes de dF que afe-
tam m são os que estão sobre a linha AB. Os com-
ponentes perpendiculares de dF se cancelam. Dessa
forma, atuará sobrem um elemento diferencial de força
dFr dado por

dFr = dF cosα. (5)

Se r̂ é um vetor unitário na direção radial, nós po-
demos integrar a Equação 5 para obter

F = r̂

∫ +π/2

−π/2
Gmλ

(
l2 − l1
l1l2

)
cosαdα, (6)

sendo que os valores escolhidos para os limites de inte-
gração permitem cobrir todo o anel.

Através da lei dos cossenos torna-se possível relaci-
onar α com l1 e l2. Em particular,

R2 = a2 + l21 − 2al1 cos(π − α). (7)

Essa equação quadrática permite obter a solução
para l1 como

l1 = −a cosα+
[
a2 cos2 α− (a2 −R2)

]1/2
. (8)

A escolha do sinal para a raiz da Equação 8 é a que
satisfaz o requerimento físico de que para α = 0 tenha-
mos l1 = R− a (vide Figura 1 ).

Nós podemos repetir o processo de forma a obter
para l2

l2 = a cosα+
[
a2 cos2 α− (a2 −R2)

]1/2
, (9)

onde a Equação 9 permite obter l2 = R + a quando
α = 0.
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Substituindo as Equações 8 e 9 na Equação 6 vem

F =
2Gmaλ

R2 − a2
r̂

∫ +π/2

−π/2
cos2 αdα, (10)

que nos permite então escrever

Fi =

(
Gπmaλi
R2
i − a2

)
r̂. (11)

A Equação 11 permite determinar a força radial
exercida sobre Mercúrio pelo i-ésimo planeta. O pa-
râmetro a fornece a distância de Mercúrio ao Sol, en-
quanto r̂ é um vetor unitário para a posição de Mercú-
rio.

Como Ri > a, Fi em 11 é positivo, de forma que
a força exercida sobre Mercúrio, por cada planeta ex-
terno, é direcionada para fora, oposta à força exercida
pelo Sol.

Agora, vamos nos referir a alguns resultados da me-
cânica clássica, considerando que as órbitas dos plane-
tas sejam estáveis e fechadas. Sabemos que o momen-
tum angular J de uma massam, que se move em relação
a um ponto O, é definido por

J = r× p, (12)

onde o símbolo × representa o produto vetorial, p =
mṙ = mv é o momentum linear de m e o ponto re-
presenta dervivada com relação ao tempo (isto é, ṙ =
dr/dt = v). Veja que v é a velocidade orbital de m.

A evolução no tempo do momentum angular pode
ser obtida através de

J̇ = ṙ× p + r× ṗ. (13)

O primeiro termo do lado direito da Equação 13 é
igual a zero, visto que ṙ = v. Isto é, os vetores ṙ e
p estão no mesmo plano, o que faz com que o produto
vetorial deles seja igual a zero.

Por outro lado, fazendo uso da segunda lei de New-
ton, na forma F = ṗ, na Equação 13 vem

J̇ = r× F(r) = r× Φ(r)r̂, (14)

onde Φ(r) é o módulo da força total aplicada sobre m.
Como r = r r̂ então a Equação 14 retorna J̇ = 0.

Assim, J é uma constante do movimento em relação ao
ponto central O, significando que o movimento de m
por ação da força Φ(r) ocorre sempre no mesmo plano.
Ou seja, o plano da órbita não muda a medida que o
planeta orbita o Sol.

Visto que, o movimento orbital ocorre num plano
perpendicular ao vetor constante J, torna-se mais con-
veniente usarmos coordenadas plano-polares em que

r = r r̂ e v = ṙ r̂ + r θ̇ θ̂, (15)

com a equação para a aceleração dada por

a = r̈ = (r̈ − r θ̇2)r̂ + (r θ̇ + 2ṙθ̇)θ̂. (16)

A Figura 2 , extraída do capítulo 14.6 de RO-
GAWSKI e COLIN (2015), apresenta as coordenadas
plano-polares para descrever o movimento de um pla-
neta ao redor do Sol.

Ao leitor interessado no aprendizado, e compreen-
são das diversas aplicações, do cálculo diferencial e in-
tegral, recomendo essa referência.

Figura 2: Coordenadas polares (r, θ) para descrever o movimento
orbital de um planeta ao redor do Sol. O deslocamento está contido
no plano ortogonal ao vetor momentum angular J. Figura extraída de
ROGAWSKI e COLIN (2015). Esses autores representam a derivada
em relação ao tempo através do apóstrofo, de forma que r ′(t) = v =
dr/dt.

O primeiro termo do lado direito da Equação 16 é o
componente radial da aceleração produzida sobre o pla-
neta. Fazendo uso da segunda lei de Newton, podemos
escrever

Φ(r) = m(r̈ − r θ̇2). (17)

Substituindo a Equação 15 na 12 , obtemos

J = r× (mv) = mr r̂× (ṙ r̂ + r θ̇ θ̂), (18)

que resulta em

J = mr2 θ̇ (r̂× θ̂). (19)

O produto vetorial de r̂ com θ̂ fornece a orientação
do vetor J. Observe a Figura 2 em que r̂× θ̂ = ẑ.
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Assim, temos para o módulo do vetor J:

J = mr2 θ̇. (20)

Podemos fazer uso da Equação 20 na 17 de forma a
obter

Φ(r) = m

(
r̈ − J2

m2r3

)
. (21)

Para o caso particular de órbita circular com raio
a, temos r̈ = 0 de forma que a Equação 21 pode ser
reescrita como

Φ(a) = − J2

ma3
. (22)

Caso o planeta seja ligeiramente perturbado no
plano da sua órbita, e se a perturbação for normal à sua
trajetória inicial, ele oscilará ao redor de a. Definindo
uma nova variável x ≡ r − a e expressando a Equa-
ção 21 do movimento radial em função de r = a + x,
torna-se possível escrever, com auxílio da Equação 22 ,
a seguinte relação

Φ(x+ a) = mẍ− J2m−1(x+ a)−3 (23)

= mẍ− J2m−1a−3
(

1 +
x

a

)−3
Observe o lado direito da Equação 23 . Como

x/a << 1 então nós podemos expandir o termo dentro
dos parênteses através de um binômio, retendo apenas
os termos de primeira ordem. Por outro lado, Φ(x+a),
do lado esquerdo da igualdade, pode ser expandido em
série de Taylor ao redor do ponto r = a. Novamente,
retemos apenas os termos de primeira ordem 6. Dessa
forma, a Equação 23 pode ser reescrita como

ẍ+

(
1

m

)[
−
(

3

a

)
Φ(a)− Φ ′(a)

]
x = 0, (24)

onde Φ ′(a) = dΦ/dr calculada no ponto r = a.
A Equação 24 descreve um oscilador harmônico se

o termo dentro dos colchetes for positivo. Se esse termo
for negativo, as oscilações crescerão de forma exponen-
cial com o tempo, o que tornará a órbita instável.

A equação de um oscilador harmônico tem a forma
geral dada por

ẍ+ ω2x = 0, (25)

6O leitor que tenha feito um ano de cálculo diferencial e integral
pode verificar os passos intermediários de desenvolvimento. Isto é,
como chegar na Equação 24 a partir da 23 . De toda forma, reco-
mendo o texto ROGAWSKI e COLIN (2015) em caso de dúvidas.

sendo ω a frequência angular das oscilações, que se
relaciona com o período T , das oscilações, através de
ω = 2π/T .

Dessa forma, para órbitas estáveis, podemos obter o
período das oscilações ao redor do ponto r = a como

T = 2π

[
m

−(3/a)Φ(a)− Φ ′(a)

]1/2
. (26)

Por definição, “apside" é o ponto de maior ou de
menor distância, medido a partir do eixo maior de uma
elipse, separando um objeto celeste do centro da atra-
ção gravitacional (que está colocado num dos focos da
elipse).

O ponto mais distante do centro da atração gravi-
tacional é chamado de “apoapside" (ou apocentro), en-
quanto o ponto mais próximo é chamado de “periap-
side" (ou pericentro). Quando o centro da atração gra-
vitacional é o Sol, o apocentro passa a se chamar “afé-
lio" , enquanto o pericentro passa a ser chamado de “pe-
riélio" .

Na Figura 3 pode-se observar o comportamento da
órbita de Mercúrio ao redor do Sol. É possível ver a
“precessão apsidal" da órbita desse planeta. O ângulo
apsidal (Ψ) é o ângulo formado entre duas apsides con-
secutivas. É a partir desse ângulo que podemos determi-
nar a taxa com que o periélio de Mercúrio precessiona.

Figura 3: A órbita de Mercúrio ao redor do Sol. Pode-se identificar
a precessão apsidal, que é medida através do ângulo Ψ. Veja que o
eixo maior da elipse, com o Sol num dos focos, permite identificar,
para cada uma das órbitas, tanto o afélio quanto o periélio. Figura
produzida pelo autor.

O tempo necessário para Mercúrio cobrir o ângulo
Ψ é igual a T/2. Como r terá “aproximadamente" o
valor a, a precessão da órbita com o tempo pode ser
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absorvida através de θ̇ (vide Figura 2 ). Assim, com
auxílio da Equação 20 podemos escrever (com r = a)

Ψ =
1

2
T θ̇ (27)

=
1

2

{
2π

[
m

−(3/a)Φ(a)− Φ ′(a)

]1/2}(
J

ma2

)
.

Por outro lado, usando a Equação 22 na 27 vem

Ψ = π

{
3 + a

[
Φ ′(a)

Φ(a)

]}−1/2
. (28)

Note que nesse resultado, Φ(a) é a força central lí-
quida e a é o raio da órbita circular que está sendo per-
turbada.

Agora, podemos usar a Equação 11 para encontrar a
soma das forças de todos os anéis planetários externos
a Mercúrio. Isto é,

F (a) = Gπm
6∑
i=2

λia

R2
i − a2

= 7, 587× 1015N. (29)

O valor numérico foi obtido substituindo as massas
e os raios orbitais de todos os planetas externos a Mer-
cúrio 7.

Note que fizemos uso da Equação 1 que permite re-
lacionar massa e distância orbital de cada planeta e a
somatória em 29 refere-se aos planetas Vênus, Terra,
Marte, Júpiter e Saturno, de forma que a soma vai de 2
até 6. O valor i = 1 corresponde a Mercúrio.

A força gravitacional exercida pelo Sol sobre Mer-
cúrio é

F�(r) = −GM�m
r2

= −1, 318× 1022N, (30)

onde M� representa a massa do Sol.
Assim, a força líquida que Mercúrio experimenta é

Φ(a) = F� + F (a). (31)

Nós podemos agora determinar o ângulo Ψ na Equa-
ção 28 . Para isso, precisamos de Φ(a) e de sua derivada
Φ ′(a).

7Os leitores interessados nos valores numéricos, para as mas-
sas e raios orbitais dos planetas, poderão encontrar facilmente es-
sas informações no curso, on-line sobre Astronomia e Astrofísica,
dos Professores Kepler de Souza Oliveira Filho e Maria de Fátima
Oliveira Saraiva do Instituto de Física da Universidade Federal do
Rio Grande do Sul (IF-UFRGS). Veja, em particular, o hiperlink
<http://astro.if.ufrgs.br/ssolar.htm>.

Dessa forma, diferenciando a Equação 31 e multi-
plicando por a vem

aΦ ′(a) = a [F ′�(a) + F ′(a)] (32)

A derivada da Equação 30 fica

aF ′�(a) = a

(
2GM�m

a3

)
= −2F�. (33)

Quanto à derivada da Equação 29 , temos

aF ′(a) = Gπma
6∑
i=2

λi
R2
i + a2

(R2
i − a2)2

= GπmaS, (34)

onde o termo em somatória foi definido como a função
S.

Substituindo o conjunto de Equações 29 a 34 na
28 vem

Ψ = π

[
3 +

GπmaS − 2F�
F� + F (a)

]−1/2
, (35)

que pode ser reescrita como

Ψ = π

[
1 + [3F (a) +GπmaS]/F�

1 + [F (a)/F�]

]−1/2
. (36)

Podemos fazer uma expansão binomial para o nu-
merador e o denominador da Equação 36 visto que
F (a) << F� e F (a) é da mesma ordem que o termo
GπmaS. Assim, obtemos após negligenciar os termos
de ordem maior que a primeira da razão F (a)/F�

Ψ = π

[
1− 3F (a) +GπmaS

2F�

] [
1 +

F (a)

F�

]
. (37)

Efetuando a multiplicação e negligenciando os ter-
mos de segunda ordem, vem

Ψ = π

(
1− F (a)

F�
− GπmaS

2F�

)
. (38)

Fazendo uso das massas e raios orbitais dos plane-
tas, torna-se possível obter Ψ como

Ψ = π(1 + 9, 884× 10−7). (39)

A taxa com que o periélio de um planeta precessiona
pode ser obtida diretamente do ângulo apsidal através
da equação

ω̇ =
2Ψ− 2π

P
=
π(1, 977× 10−6)

87, 969 dias
, (40)
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onde P é o período sideral do planeta (para Mercúrio
P = 87, 969 dias).

Após converter para segundos de arco por século,
obtemos

ω̇ = 531, 9 ” por século. (41)

Como mencionado na Seção 1 , o valor atual total
para a precessão do periélio de Mercúrio é de, aproxi-
madamente, 575” por século (NEWCOMB, 1898). As-
sim, existe uma diferença (anomalia) de 43” por século
que não pode ser absorvida na teoria Newtoniana.

Contudo, como veremos na Seção 3 , essa “anoma-
lia" pode ser perfeitamente absorvida na TRG de Eins-
tein.

3 Precessão do Periélio de Mercúrio: Aborda-
gem Relativística Geral

Em 18 de novembro de 1915, Einstein apresentou à
Academia Prussiana de Ciências seu trabalho, cujo tí-
tulo é Explicação sobre o Movimento do Periélio de
Mercúrio a partir da Teoria da Relatividade Geral.

Einstein relatou, nessa palestra, que o movimento
do periélio de Mercúrio poderia ser bem explicado
(EINSTEIN, 1915a) pela nova teoria de gravitação que
ele havia apresentado poucos dias antes, entre 4 e 11
de novembro de 1915 (EINSTEIN, 1915b; EINSTEIN,
1915c).

A TRG de Einstein entende a gravitação como re-
sultado da “curvatura do espaço-tempo" . A forma mais
direta de você entender a gravitação, no contexto da
TRG, é imaginar uma cama elástica bem esticada repre-
sentando o espaço-tempo. Colocando uma esfera densa
e massiva no centro da cama elástica, esta se curvará.
Isto é, a cama elástica se deformará ao redor da esfera
massiva.

Coloque agora uma bolinha nas proximidades dessa
esfera massiva. Você observará seu deslocamento em
direção a parte mais curvada da cama elástica. É algo
parecido a esse exemplo que ocorre com o espaço-
tempo – o “tecido que permeia todo o Universo" .

Na presença de um objeto massivo, o espaço-tempo
se curvará, fazendo com que corpos de menor massa, e
até mesmo a própria luz, desloquem-se em direção ao
objeto que atuou como fonte da curvatura do espaço-
tempo (MIRANDA, 2019). É esse efeito que chama-
mos de força gravitacional (vide Figura 4 ).

As equações de campo da TRG de Einstein são es-
critas na forma

Rµν −
1

2
Rgµν =

8πG

c4
Tµν , (42)

Figura 4: O espaço-tempo sendo curvado pela presença de um ob-
jeto massivo (Sol, neste exemplo). Um objeto de menor massa (Terra,
neste caso) sente essa curvatura e se desloca descrevendo o movi-
mento orbital. Veja que a Terra também produz curvatura do espaço-
tempo ao seu redor. Contudo, a deformação é mais acentuada na vi-
zinhança do Sol, por este possuir massa muito maior que a do nosso
planeta (MIRANDA, 2019) . A Figura foi produzida por Schwarza,
Divulgador e Youtuber do Canal Poligonautas.

ondeRµν é o tensor de curvatura de Ricci,R é o escalar
de curvatura, gµν é o tensor métrico, G é a constante de
gravitação universal, c é a velocidade da luz no vácuo e
Tµν é o tensor energia-momentum.

Os índices µ e ν podem assumir os valores 1, 2,
3 e 4 8 . Matematicamente, tensores de posto 2 (dois
índices, no caso, µ e ν) são matrizes de números, ou
de funções, que se transformam de acordo com certas
regras sob uma mudança de coordenadas. Assim, na
TRG, os tensores são representados através de matrizes
4× 4.

Na física, os tensores caracterizam as propriedades
de um dado sistema. Um tensor pode consistir de um
único número, sendo neste caso chamado de tensor de
posto zero ou, simplesmente, escalar. Exemplos de es-
calar são: massa de uma partícula, volume de um pla-
neta, temperatura de uma estrela ...

Exemplos de campos escalares são a densidade de
um fluido em função da posição. Outro exemplo é a
energia potencial gravitacional em função da posição.
Note que ambos, densidade e energia potencial gravita-
cional, são números únicos (funções) que variam conti-
nuamente de ponto a ponto, definindo assim um campo
escalar.

O próximo tensor é o de posto um, também conhe-
cido com o nome de vetor. No espaço tridimensional
comum, um vetor tem três componentes (contém três
números ou três funções da posição). No espaço-tempo
de quatro dimensões, um vetor tem quatro componentes
(três componentes espaciais e uma temporal).

Um vetor pode ser considerado uma matriz coluna

8Utilizarei nesta Seção a mesma notação dos trabalhos originais
de Einstein.
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ou linha, dependendo do arranjo de termos (a dimensão,
então, seria n × 1 ou 1 × n). Isso ocorre porque os
componentes de um vetor podem ser visualizados como
sendo escritos em uma coluna ou ao longo de uma linha.

Acima de um vetor estão os tensores de posto 2, que
são organizados na forma de matrizes. Assim como os
vetores representam propriedades físicas mais comple-
xas do que os escalares, as matrizes representam pro-
priedades físicas ainda mais complexas do que as que
podem ser manipuladas por vetores 9 .

Voltando à TRG de Einstein, a curvatura do espaço-
tempo, que dá origem à gravidade, é descrita pelo ten-
sor de Ricci. Este, por sua vez, é obtido a partir de um
tensor de curvatura, mais geral, de posto 4 (quatro ín-
dices como, por exemplo, µ, ν, ξ e β), que é chamado
tensor de Riemann. A caracterização da curvatura do
espaço-tempo é então obtida através do tensorRµν e de
seu escalar R na Equação 42 .

Outro tensor presente nessa equação é o tensor mé-
trico gµν . Métrica significa um padrão de medida. For-
malmente, o tensor métrico atua num espaço vetorial
“recebendo" vetores e “retornando" números. É o ob-
jeto matemático que permite definir rigorosamente me-
didas de comprimento (ou de distância entre dois pon-
tos) além de ângulos num dado espaço.

Na representação matricial, os números reais que
descrevem os componentes desse tensor dependem do
particular sistema de coordenadas que estiver sendo uti-
lizado. Contudo, o tensor métrico sempre terá a propri-
edade de receber vetores e retornar números com úteis
informações sobre a geometria do espaço em estudo.

Em termos de coordenadas, na notação usada por
Einstein, o componente 4 representa a coordenada tem-
poral do espaço-tempo. As três coordenadas espaciais
são representadas como 1, 2 e 3.

Se trabalharmos em coordenadas cartesianas, então
na TRG, respectivamente, descrevem x, y, z e t. No
caso de coordenadas esféricas, descrevem r, θ, φ e t.
De forma geral, as coordenadas são representadas como
x1, x2, x3 e x4 com a coordenada temporal sendo x4.

Veja que o lado esquerdo da Equação 42 apresenta
grandezas puramente geométricas, isto é, curvatura,
medidas de distâncias e ângulos. Já do lado direito de
42 , nós temos o tensor Tµν que descreve os campos
de matéria e radiação presentes numa dada região do
espaço-tempo.

Assim, os físicos dizem que as equações da TRG de
Einstein, representadas em 42 , relacionam a geometria

9Procuramos neste trabalho introduzir o conceito de tensores de
forma mais simples e natural. Aos leitores interessados em compre-
ender o conceito de tensores com maior rigor matemático, sugiro o
excelente texto de SYNGE e SCHILD (1978).

(lado esquerdo) com a física (lado direito). Isto é, maté-
ria e radiação dizem ao espaço-tempo como se curvar;
por outro lado, a curvatura diz às matéria e luz como
elas devem se comportar.

A força gravitacional é o resultado desse acopla-
mento entre a curvatura do espaço-tempo e os campos
de matéria e radiação que permitem a tudo descrever
(planetas, estrelas, galáxias, partículas, luz ...) no Uni-
verso.

Em 1915, Einstein começou a determinar gµν para
o Sol. O sistema solar pode ser encarado como uma
massa isolada, que está longe de outras massas no Uni-
verso. Quase 99 por cento da massa total do sistema
solar está concentrada no Sol.

Assim, podemos tratar os planetas como pontos de
massa que se movem no campo gravitacional estático
do Sol. Dentro do sistema solar, pode-se negligenciar o
potencial gravitacional dos planetas e lidar apenas com
o potencial gravitacional do Sol, considerando-o como
uma estrela com simetria esférica.

Por causa da distância separando o planeta da massa
central, a curvatura do espaço-tempo vai gradualmente
diminuindo a partir do Sol, tornando-se plana a gran-
des distâncias. Essas foram as condições que Einstein
impôs ao campo gravitacional do Sol.

A partir desse raciocínio, ele iniciou seu cálculo to-
mando as Equações 42 escritas para o vácuo (o que sig-
nifica tomar Tµν = 0), obtendo então∑

α

∂Γαµν
∂xα

+
∑
αβ

ΓαµβΓβνα = 0, (43)

onde Γαµν são os componentes do campo gravitacional
determinados através de

Γαµν = −1

2

∑
β

gαβ
(
∂gµβ
∂xν

+
∂gνβ
∂xµ

− ∂gµν
∂xα

)
. (44)

Adicionalmente, Einstein usou
√
−g = 1 como condi-

ção para as coordenadas.
O lado esquerdo da 43 é o tensor de Ricci, que

engloba o tensor métrico e suas derivadas. As Equa-
ções 43 são não lineares por causa de Γαµν .

Em seguida, ele partiu da chamada aproximação de
ordem zero, em que gµν corresponde à teoria da relati-
vidade especial (ou a chamada “métrica plana de Min-
kowski" ). Isto é,

gµν = diag (−1,−1,−1,+1), (45)

onde “diag" significa que os únicos elementos não nulos
são os que pertencem à diagonal da matriz de represen-
tação do tensor gµν . Veja que g11 = g22 = g33 = −1
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são os componentes espacias do tensor métrico, en-
quanto g44 = +1 é o componente temporal.

Einstein escreveu a Equação 45 como

gρσ = δρσ, gρ4 = g4ρ = 0, g44 = 1, (46)

onde os índices ρ e σ significam 1, 2 e 3. O delta de
Kronecker (δρσ) é igual a 1 se ρ = σ e é igual a zero se
ρ 6= σ.

A aproximação representada na Equação 46 é a
aproximação de ordem zero. Einstein então assumiu
que gµν difere dos valores dados na Equação 46 por
uma pequena quantidade quando comparada a 1, tra-
tando esse desvio como uma pequena mudança de “pri-
meira ordem". A solução para o campo métrico gµν tem
quatro propriedades, que implicam em quatro proprie-
dades para o campo gravitacional do Sol:

• A solução é estática. Todos os componentes da so-
lução são independentes da coordenada temporal
(x4).

• A solução gµν é esfericamente simétrica em rela-
ção à origem do sistema de coordenadas.

• As equações gρ4 = g4ρ = 0 são válidas para ρ =
1, 2, 3.

• No infinito, gµν tende aos valores da métrica plana
de Minkowski da relatividade especial, como re-
presentado na Equação 46 .

Para primeira ordem, as quatro condições acima for-
necem a seguinte solução

gρσ = −δρσ − α
xρxσ
r3

, g44 = 1− α

r
, (47)

onde gρσ tende à métrica de Minkowski, conforme
Equação 46 , através da quarta propriedade acima, en-
quanto gρ4 e g4ρ são determinados pela terceira propri-
edade.

É direto verificar que as quatro propriedades, para o
campo gravitacional do Sol, são preservadas pela solu-
ção de primeira ordem representada em 47 . Para isso,
basta substituir a solução 47 nas Equações 43 e 44 .

A quantidade r é obtida como

r =
√
x21 + x22 + x23, (48)

enquanto α é

α =
2GM

c2
, (49)

com M sendo a massa do Sol.
Posteriormente, Einstein obteve o valor para os

componentes do campo gravitacional do Sol em se-
gunda ordem. Ele escreveu as equações de movimento
para uma massa pontual movendo-se sob ação do Sol.
Um planeta em queda livre sob ação de um campo
gravitacional move-se em uma linha geodésica (s) de
acordo com a equação (EINSTEIN, 1915a)

d2xν
ds2

=
∑
στ

Γνστ
dxσ
ds

dxτ
ds

. (50)

A Equação 50 contém as equações Newtonianas
de movimento como uma primeira aproximação. As-
sim, Einstein calculou as equações das linhas geodési-
cas e comparou-as com as equações Newtonianas das
órbitas dos planetas no sistema solar. Ele verificou
que havia correspondência entre a relatividade geral e
a teoria de Newton, em que a atração gravitacional é
uma força central e todos os planetas movem-se em um
plano constante em torno do Sol (vide Seção 2 ).

Portanto, nas coordenadas polares, o movimento so-
bre esse plano depende da distância r, do planeta ao
centro de massa do sistema, e do ângulo formado entre
a linha que conecta o planeta ao centro e uma linha de
referência escolhida arbitrariamente (vide, em particu-
lar, a Figura 2 ). Assim procedendo, obtemos a equação
da órbita planetária, cuja solução para o caso Newtoni-
ano descreve uma elipse.

O periélio da órbita é o ponto em que o planeta está
mais próximo do Sol. Como pode ser visto na Figura
3 o eixo principal da elipse, descrita por Mercúrio, gira
lentamente em torno do Sol. Essa é a precessão do pe-
riélio, sendo mais pronunciada quanto maior for a ex-
centricidade e da órbita.

Na teoria de Einstein, a Equação 50 leva a uma
equação relativística para as orbitas planetárias. Eins-
tein descobriu que a diferença entre as equações orbitais
(Newtoniana e relativística) estava em um termo adici-
onal 2GM/c2r3.

Com essas aproximações, Einstein obteve a forma
como a curvatura do espaço-tempo influencia o ângulo
apsidal. Isto é,

Ψ = π

[
1 +

3

2

α

a(1− e2)

]
. (51)

Assim, a cada órbita o periélio avança

ω = 2Ψ− 2π = 3π
α

a(1− e2)
. (52)

Usando os valores para a massa do Sol (M ), o semi-
eixo maior da órbita (a) e excentricidade da órbita (e),
torna-se possível reescrever a Equação 52 como
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ω = π × 1, 60355× 10−7. (53)

A taxa com que o periélio de Mercúrio precessiona
é então

ω̇ =
ω

P
=
π(1, 60355× 10−7)

87, 969 dias
. (54)

O resultado da contribuição de efeitos relativísticos
gerais para ω̇ é, dessa forma,

ω̇ = 43, 1 ” por século. (55)

Somando o previsto pela teoria Newtoniana (41)
com a “anomalia" associada com a curvatura do espaço-
tempo (55), nós obtemos o valor ω̇ = 575 ” por século
para a precessão do periélio de Mercúrio. Valor que está
em acordo com os dados observacionais.

Esse foi o primeiro triunfo da Teoria da Relatividade
Geral. Em particular, Einstein concluiu seu trabalho de
1915 (EINSTEIN, 1915a) escrevendo:

“O cálculo produz, para o planeta Mercúrio, um
avanço do periélio de 43” por século, enquanto os as-
trônomos indicaram 45” ± 5” por século como uma
diferença inexplicável entre as observações e a teoria
Newtoniana. Esta teoria, portanto, concorda comple-
tamente com as observações" 10 .

4 Considerações Finais

Neste trabalho, cobrimos cerca de quatro mil anos de
estudos sobre os movimentos planetários. Partindo da
antiga Mesopotâmia cerca de 2.000 a.C., em que os mo-
vimentos planetários começaram a ser registrados de
forma sistemática, passando pela contribuição dos gre-
gos na construção dos primeiros modelos destinados a
explicar o “funcionamento do sistema solar" , nós co-
brimos vinte séculos de história. O modelo Geocên-
trico, estruturado durante esse período, perpetuou-se até
a idade média quando foi gradativamente sendo substi-
tuído pelo modelo Heliocêntrico.

Galileo Galilei e, em particular, Isaac Newton foram
responsáveis por um gigantesco salto na compreensão
do movimento planetário, bem como da estruturação da
área do conhecimento que hoje chamamos de “física".
Até o início de 1781, além da Terra, eram conhecidos os
mesmos cinco planetas que os povos da Suméria estu-
davam e acompanhavam através de registros feitos em
escrita cuneiforme. Nesse ano, William Herschel des-
cobriu Urano de forma acidental.

10Aos interessados em seguir o raciocínio completo de Einstein,
sobre a “anomalia" do periélio de Mercúrio, sugiro acessar o hiper-
link da referência Einstein (1915a) na qual as notas desta Seção estão
baseadas.

Com base na bem estabelecida teoria de gravita-
ção Newtoniana, um novo salto no estudo do sistema
solar foi dado por Urbain-Jean-Joseph Le Verrier que
concentrou-se no cálculo preciso das órbitas planetá-
rias. Le Verrier previu a existência de mais um planeta
no sistema solar – Netuno – encontrado posteriormente
no quadrante do céu que ele, matematicamente, havia
identificado.

O sucesso alcançado pela teoria Newtoniana da gra-
vitação esbarrou na observada “anomalia" de Mercúrio.
Le Verrier desenvolveu um seminal trabalho matemá-
tico, mostrando que a órbita de Mercúrio lentamente
precessionava por influência do campo gravitacional do
Sol e dos demais planetas em órbitas externas à Mercú-
rio.

Ele obteve, a partir dos seus cálculos, o valor de
526,7 segundos de arco por século, enquanto a preces-
são observada era de 565 segundos de arco por século.
Essa diferença de 38” por século configurava-se numa
“anomalia" que não podia ser explicada pela gravitação
Newtoniana.

A partir do sucesso alcançado com a previsão do
planeta Netuno, Le Verrier chegou a propor a existência
de um novo planeta, chamado Vulcano, em órbita in-
termercurial. Com base nas observações do astrônomo
amador Lescarbault, Le Verrier calculou a distância de
Vulcano em relação ao Sol, obtendo 0,147 unidades as-
tronômicas. O hipotético planeta possuiria período or-
bital de 19 dias e 17 horas.

Após diversas tentativas de observar Vulcano, a
comunidade científica foi gradativamente deixando de
acreditar na existência desse planeta. Simon Newcomb,
em 1882, corrigiu algumas inconsistências na massa
planetária e repetiu os cálculos de Le Verrier, deco-
brindo um deslocamento extra no periélio de Mercúrio
de 43” por século. Os dados observacionais, naquela
época, mostravam que a precessão de Mercúrio era de,
aproximadamente, 575” por século.

Newcomb ponderou que se o expoente, na lei da
gravitação de Newton, fosse 2,00000016 ao invés de
2, então o movimento de Mercúrio poderia ser expli-
cado com maior precisão. Esse raciocínio configurou-
se numa mudança de paradigma. Anteriormente, as ob-
servações eram questionadas e a teoria de Newton era
inatacável. A partir dessa análise de Newcomb, os ci-
entistas ao final do século XIX começavam a questionar
as fundações da lei de gravitação clássica.

Isso abriu caminho para que Einstein introduzisse,
em 1915, uma das mais belas teorias da física – a Teo-
ria da Relatividade Geral. A força gravitacional passa
a ser tratada como uma resposta à curvatura do espaço-
tempo, tecido que permeia todo o Universo. No mesmo
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artigo em que descreve a sua teoria de gravitação, Eins-
tein mostra que a “anomalia" de 43” por século, na pre-
cessão do periélio de Mercúrio, pode ser perfeitamente
explicada com base na sua teoria.

No ano seguinte, Einstein submeteu ao periódico
Annalen der Physik um artigo de revisão sobre a Teoria
da Relatividade Geral (EINSTEIN, 1916) . Ele derivou
a equação para a deflexão de um raio de luz vindo de
uma estrela de fundo e passando próximo ao Sol.

Em função do sucesso da TRG em explicar a “ano-
malia" de Mercúrio, em 1915, e da previsão de que raios
luminosos de estrelas distantes seriam curvados pelo
Sol, feita em 1916, a comunidade científica preparou-
se para esse segundo teste da teoria de Einstein.

A confirmação dessa previsão foi obtida por ocasião
do eclipse total do Sol ocorrido no dia 29 de maio de
1919, visível na Ilha de Príncipe (África) e em Sobral
(Ceará – Brasil).

Em poucos anos, a nova teoria de gravitação encan-
tou os cientistas por sua beleza conceitual e pelas pre-
visões sucessivamente confirmadas através de observa-
ções e experimentos.
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