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Resumo. Em conjunto com o desvio da luz de estrelas distantes pelo campo gravitacional do Sol (com-
provado através de observagdes durante o eclipse solar de 1919), e do desvio para o vermelho na frequén-
cia de um feixe de luz pela acdo de um campo gravitacional (comprovado pelo experimento de Pound e
Rebka realizado em 1960), o movimento secular do periélio de Merctrio configura-se num dos chama-
dos “testes cldssicos" da teoria da relatividade geral (TRG) de Albert Einstein. Em particular, o calculo
do movimento andmalo de Merctirio foi a primeira peca de evidéncia empirica que ajudou a estabelecer
a TRG como uma das mais belas teorias da fisica. Em 1915, Einstein incluiu esse calculo, como uma
aplicacdo, no artigo em que apresentou a sua teoria de gravitagdo. O valor obtido através da TRG con-
tribuiu para dar confianca a nova teoria através de um problema empiricamente testavel e que, na sua
primeira aplicagdo, resolvia um dos maiores problemas da mecénica celeste a época. Neste trabalho,
descrevemos os aspectos histdricos relacionados aos estudos sobre os movimentos dos planetas. Em
particular, discutimos como o movimento andmalo de Merctirio foi analisado no ambito da mecanica
classica, comparando a previsdo cldssica com os dados observacionais estabelecidos naquele periodo.
Finalmente, comparamos a resposta cldssica ao movimento andmalo de Mercirio com o valor obtido
através da TRG — o primeiro sucesso da teoria de gravitagdo de Einstein.

Palavras-chaves: Teoria da Relatividade Geral. Mecénica Celeste. Avan¢o no Periélio de Merctrio.

Abstract. Together with the deflexion of the light from distant stars by the gravitational field of the Sun
(as evidenced by observations during the solar eclipse of 1919), and the redshift in the frequency of a light
beam by the action of a gravitational field (as verified by the experiment carried out by Pound and Rebka
in 1960), the secular motion of the perihelion of Mercury is one of the so-called “classical tests" of Albert
Einstein’s theory of general relativity (TGR). In particular, the calculation of the anomalous motion of
Mercury was the first piece of empirical evidence to help establish TGR as one of the most beautiful
theories of physics. In 1915, Einstein included this calculation as an application in the article in which
he presented his theory of gravitation. The value obtained via TGR contributed to give confidence to
the new theory through an empirically testable problem and that, in its first application, solved one of
the major problems of celestial mechanics. In this work, we describe the historical aspects related to the
studies on the motions of planets. In particular, we discuss how the anomalous motion of Mercury was
analyzed in the scope of classical mechanics comparing the classical prediction with the observational
data established at that time. Finally, we compare the classical response to the anomalous motion of
Mercury with the value obtained through TGR - the first success of the Einstein’s gravitation theory.

Keywords: Theory of General Relativity. Celestial Mechanics. Perihelion of Mercury Advance.

1 INTRODUGAO sopotimia, regido hoje compreendida pelo Iraque, em
sua totalidade, e partes da Siria, Ird, Libano e Turquia.

Historicamente, os primeiros estudos relacionados ao ) . . . .
Tabuas de argila com registros em escrita cuneiforme

movimento planetdrio t€m suas raizes na antiga Me-

Conex. Ci. e Tecnol. Fortaleza/CE, v. 13, n. 2, p. 7 - 20, mai. 2019

Artigo submetido em 28 mar. 2019 e aceito em 28 mai. 2019


oswaldo.miranda@inpe.br

CONEROES,

CIENCIAETECNOLOGIA

AVANCO DO PERIELIO DE MERCURIO — O PRIMEIRO SUCESSO DA TEORIA DA RELATIVIDADE GERAL DE EINSTEIN

de 2.000 a.C. revelam um rico conhecimento astrond-
mico pelos povos que habitaram essa regido (NEUGE-
BAUER| [1975; NEUGEBAUER| [1983; [LAMBERT,
1987; EVANS| [1998)). As 12 constelagdes zodiacais,
chamadas de “rebanho brilhante" por esses povos, ob-
servacodes de estrelas e dos planetas Merctrio, Vénus,
Marte, Jupiter e Saturno estdo registradas em tabuas de
argila produzidas na “Baixa Mesopotdmia" (Suméria)
dentro desse periodo.

Com a consolidagdo do império grego estendendo-
se até o mar Negro, por voltade V a.C., é provavel que o
conhecimento astrondmico da Mesopotamia tenha sido
absorvido pela Grécia antiga. Eudoxo de Cnido, que
viveu na Asia Menor no século IV a.C., deixou regis-
tros que mostram a importincia dos “astrénomos ba-
bilonios" sobre o seu trabalho em astronomia. Eudoxo,
além de brilhante matematico, concentrou-se principal-
mente no estudo dos movimentos aparentes dos plane-
tas.

Os planetas mais afastados se movem de leste
para oeste, mas ocasionalmente parecem retroceder
movendo-se de oeste para leste. Eudoxo acreditava no
modelo Geocéntrico, de forma que idealizou um sofis-
ticado esquema para explicar essas irregularidades nos
movimentos dos planetas e da Lua. O termo “plane-
tas" vem do grego wAavnTaw que significa “estrelas
indisciplinadas" (ou errantes).

Por volta do ano 280 a.C. Aristarco, nascido na ilha
de Samos no mar Egeu Oriental, foi o primeiro astro-
nomo a propor que a Terra girava ao redor do Sol (mo-
delo Heliocéntrico). Contudo, suas ideias foram rejei-
tadas em favor do modelo Geocéntrico. A concepg¢do
de Aristarco somente foi retomada depois de decorri-
dos dezoito séculos, em plena idade média.

No século XIII, os trabalhos dos astrdnomos gregos
chegaram ao mundo ocidental através de tradugdes pre-
servadas pelos drabes (NEUGEBAUER), |1975; INEU-
GEBAUER| [1983)).

Um jovem astrénomo polonés de nome Nicolau Co-
pérnico identificou, a partir dessas traducdes, que o0 mo-
delo mais simples e elegante, para explicar os movi-
mentos dos planetas, consistia em que estes descreves-
sem Orbitas circulares ao redor do Sol. No ano da sua
morte, em 1543, as suas conclusdes foram publicadas
no livro De revolutionibus orbium coelestium.

A contribui¢io seguinte ao estudo dos movimentos
planetdrios foi dada pelas numerosas observacdes rea-
lizadas pelo astronomo dinamarqués Tycho Brahe, nas-
cido trés anos apds a publicagdo do livro de Copérnico.

Tycho nio aceitava completamente o modelo de Co-
pérnico. Corretamente, ele considerava que a Lua orbi-
tava a Terra e que os planetas orbitavam o Sol. Contudo,

erroneamente, seu sistema considerava o Sol orbitando
a Terra.

Porém, as observagdes que ele realizou, ao longo
de vérios anos, permitiram ao seu assistente, chamado
Johannes Kepler, concluir que o modelo de Copérnico
se ajustava muito bem aos dados observacionais desde
que as Orbitas planetarias circulares fossem substituidas
por elipticas.

As conclusdes de Kepler podem ser resumidas em
suas trés bem conhecidas leis do movimento planetario:

e A 6rbita de um planeta é uma elipse com o Sol em
um dos seus focos;

e A linha que une o Sol a um planeta varre dreas
iguais em intervalos iguais de tempo, independen-
temente do comprimento da linha;

e O quadrado do periodo (P) de qualquer planeta é
proporcional ao cubo da sua distdncia média (R)
ao Sol, ou seja, P2 = kR3. A constante k é a
mesma para todos os planetas.

Com as leis de Kepler, originalmente publicadas no
periodo 1609 a 1619, a teoria Heliocéntrica passou a
ser vista como um modelo de funcionamento do sistema
solar.

Por outro lado, Galileo Galilei, nascido em 1564, foi
fundamental para o avanco do método cientifico, tanto
em métodos de observacao quanto de experimentacio.
Embora Galileo ndo tenha inventado o telescopio, ele
talvez tenha sido o primeiro a fazer uso sistemdtico
desse instrumento para observagdes.

Através do telescopio, ele identificou as quatro
grandes luas de Jupiter. Isso possibilitou fazer uma ana-
logia direta entre o sistema Terra—Lua com outros cor-
pos do sistema solar. Galileo também demonstrou que
as diferentes fases do planeta Vénus poderiam ser ex-
plicadas se esse planeta girasse ao redor do Sol.

Isaac Newton, nascido um ano apds a morte de Ga-
lileo Galilei (ocorrida em 1642), trouxe uma nova per-
cepcdo sobre os movimentos planetdrios. Newton de-
monstrou que a forca de atragdo gravitacional entre dois
corpos varia de forma inversamente proporcional ao
quadrado da distancia de separagao e é diretamente pro-
porcional ao produto das massas dos corpos envolvidos,
que hoje chamamos de lei da gravitacdo de Newton.

O seu livro, cujo titulo original é Philosophiae Na-
turalis Principia Mathematica, publicado em 1687, é
um marco extraordindrio em ciéncias naturais. Contém
as leis para o movimento dos corpos, a fundamentagao
da mecanica cldssica, assim como a lei da gravitacdo
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universal [1]

Para poder demonstrar que a forga de atracdo gra-
vitacional, entre dois corpos, poderia ser determinada
considerando que a massa de cada corpo concentrava-
se num ponto central, Newton precisou desenvolver um
ramo inteiramente novo da matemadtica, que hoje cha-
mamos de célculo diferencial e integral.

Newton generalizou as hipéteses da forga gravitaci-
onal, explicando as leis de Kepler do movimento plane-
tario, bem como explicando através da sua lei “univer-
sal" da gravitacdo como pares de particulas interagiam
no Universo.

No século XVIII, o astronomo William Herschel
descobriu que sistemas bindrios, isto €, “estrelas du-
plas" em que uma estrela orbita o redor da outra, obe-
deciam a lei de gravitacdo de Newton, da mesma forma
que os planetas do sistema solar. Herschel tornou-se um
astronomo famoso por ter descoberto o planeta Urano
em 1781.

Ele buscava identificar sistemas estelares binarios,
mas no dia 13 de marco, Herschel identificou um pe-
queno ponto luminoso no céu, que inicialmente parecia
um cometa. Apds acompanhar o objeto por algumas
semanas, ele conseguiu identificar que tratava-se de um
planeta — Urano — com 6rbita mais distante que Saturno.
O sistema solar ganhava assim mais um planeta em re-
lag@o aos que eram conhecidos desde a Mesopotamia.

No inicio do século XIX, existiam diferentes mé-
todos matematicos para previsdo dos movimentos dos
planetas. Estes haviam sido desenvolvidos ao longo de
vdrias décadas por diferentes astronomos. Em 1839,
o astronomo francés Urbain-Jean-Joseph Le Verrier
concentrou-se no célculo preciso das 6rbitas planeta-
rias.

Merctrio € o planeta mais préximo do Sol, possui
curto periodo de translagdo e elevada excentricidade de
orbita. Isso fez com que Le Verrier comegasse, por volta
de 1841, a analisar com mais atengéo a orbita desse pla-
neta, procurando determiné-la com precisao.

Os seus primeiros trabalhos sobre o célculo da 6r-
bita de Merctrio foram publicados em 1843 mas com
um resultado que o préprio Le Verrier considerava
insatisfatorio (LE-VERRIER| |1843a; [LE-VERRIER|
1843b).

Le Verrier deixou Mercurio de lado e passou a
concentrar a atencdo sobre Urano. Ele trabalhou du-
rante varios meses em complexos cdlculos para expli-
car as pequenas discrepancias entre a drbita observada
de Urano e aquela prevista pelas leis de Newton. Em

'Recomendo aos interessados a versio em lingua portuguesa pu-
blicada pela Editora da Universidade de Sdao Paulo (NEWTON|
2008a;[NEWTON]| 2008b).

31 de agosto de 1846, Le Verrier apresentou sua ané-
lise final a Academia Francesa de Ciéncias, prevendo
que as pequenas discrepancias na 6rbita de Urano eram
ocasionadas por um “planeta invisivel".

Ele encaminhou carta a Johann Galle, do Observa-
tério de Berlim, com a drbita prevista para o “novo pla-
neta". A carta chegou em 23 de setembro de 1846 e na
mesma noite Galle e o astronomo Heinrich d’ Arrest en-
contraram o “planeta de Le Verrier" — Netuno — dentro
da 4rea prevista por esse astronomo El

Com o sucesso alcangado a partir da descoberta de
Netuno, Le Verrier assumiu a tarefa de colocar em har-
monia todo o sistema planetdrio. Caso ndo fosse possi-
vel explicar com precisdo os dados observacionais, en-
tdo ainda existiriam causas desconhecidas de perturba-
¢oOes gravitacionais (LEVY,|1968).

Ele comegou entdo por reavaliar, até a 7% ordem,
as perturbagdes planetarias conhecidas. Essa derivagéo,
que resultou em 469 termos matematicos, foi concluida
em 1849. Em seguida, ele coletou observacdes das
posicdes dos planetas (dados observacionais de 1750),
avaliando-os e corrigindo as inconsisténcias com os da-
dos mais recentes. Isso o ocupou pelos anos seguintes.

Em 1859, Le Verrier retoma o estudo sobre 0 movi-
mento de Mercurio. Examinando os registros dos tran-
sitos desse planeta, ele concluiu que a érbita precessi-
onava lentamente. Em principio, resultado natural se a
influéncia dos demais planetas fosse levada em conta.

A precessdo observada era de 565 segundos de arco
por século. Le Verrier obteve a partir dos seus cdlculos
o valor de 526,7 segundos de arco por século.

Essa diferenca de 38, 3” por século E| entre os dois
valores, aparentemente, nao podia ser absorvida pela te-
oria Newtoniana de gravitacdo através dos métodos per-
turbativos desenvolvidos por Le Verrier.

Os incrementos esperados para a 6rbita de Mercu-
rio, a partir de cada um dos planetas que Le Verrier uti-
lizou em seus célculos, forneciam por século:

e Vénus: 280, 6”

Terra: 83,67

Marte: 2,6”

Japiter: 152, 6”

Saturno: 7,2”

e Urano: 0,1”

20 inglés John Couch Adams trabalhou de forma independente de
Le Verrier sobre as discrepancias na érbita de Urano. Adams encami-
nhou sua soluc¢do ao Royal Greenwich Observatory dois dias ap6s a
comunicacio de Le Verrier a Academia Francesa.

30 simbolo ” representa segundos de arco.
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Vénus, vizinho mais préximo de Merctirio, € o prin-
cipal culpado pelo movimento andmalo, mas os outros
planetas também contribuem em maior ou menor grau.
Note que Jupiter, planeta mais massivo do sistema so-
lar, contribui com quase 30 por cento da taxa de avango
do periélio de Merciirio, apesar de sua grande distncia
do Sol.

As perturbacdes planetdrias levam a uma taxa de
avango do periélio de Mercirio de 1, 27” por 6rbita ou,
aproximadamente, 527" por séculoﬂ

Em funcdo dessa diferenca de 38,3” e motivado
pelo sucesso da descoberta de Netuno, Le Verrier infe-
riu que um aumento de aproximadamente 10 por cento
na massa de Vénus explicaria o avan¢o do periélio de
Merciirio, mas esse incremento de massa também afe-
taria a Orbita da Terra de uma maneira que ndo havia
sido observada até entdo.

Como a “massa faltante" nao deveria afetar a 6rbita
da Terra, Le Verrier inferiu que ela deveria estar mais
perto do Sol do que a 6rbita de Mercirio. Assim come-
¢ou a busca ao “novo planeta invisivel" de Le Verrier,
ou melhor, aos “planetas invisiveis".

Ele rapidamente percebeu que um tnico planeta tdo
perto do Sol teria um enorme brilho e, portanto, seria vi-
sivel durante os eclipses solares. Como nenhum planeta
desse tipo havia sido observado durante eclipses passa-
dos, Le Verrier supds que a massa estaria na forma de
muitos corpos pequenos.

Contudo, em dezembro de 1859, Le Verrier rece-
beu uma surpreendente comunicacdo do médico fran-
cés, e astronomo amador, Edmond Modeste Lescarbault
da vila de Orgeres-en-beauce na Franga. Lescarbault in-
formava que havia registrado observagdes durante o que
ele acreditava ser um transito de um “planeta intermer-
curial".

Le Verrier, convencido pela histéria, divulgou a no-
ticia do novo planeta, que foi rapidamente denominado
de Vulcano — o deus do fogo na mitologia romana. Ele
havia, novamente, encantado a comunidade cientifica
francesa. A dupla formada por Isaac Newton e Urbain-
Jean-Joseph Le Verrier novamente triunfou, ao menos
era o que parecia.

Com base nas observagdes de Lescarbault, Le Ver-
rier calculou a distincia do planeta em relacdo ao Sol,
obtendo 0,147 unidades astronomicas, e determinou seu
periodo como sendo 19 dias e 17 horas (BAUM; SHE-
EHANI| [1997). A comunidade astronOmica tentou re-

4Merciirio completa uma Grbita ao redor do Sol em, aproximada-
mente, 88 dias. Um ano terrestre equivale a 365,26 dias de forma que
em 100 anos temos 36.526 dias. O nimero de 6rbitas de Merctirio
em 100 anos é 36.526/88 ~ 415. Assim, a cada Grbita Mercirio
avanga seu periélio em 527/415 ~ 1,27”, conforme a estimativa de
Le Verrier.

petidamente observar o evasivo planeta Vulcano, mas,
com O passar do tempo, sem nenhum avistamento, co-
megaram a surgir dividas quanto a existéncia desse pla-
neta.

Com tanta atengdo direcionada para observar a area
ao redor do Sol durante os eclipses subsequentes, e sem
a0 menos uma observa¢do positiva, a grande maioria
dos astrébnomos deixou de acreditar na existéncia de
Vulcano.

Até sua morte, em 1877, Le Verrier permaneceu to-
talmente convencido de que a “massa faltante" existia
e que eventualmente seria encontrada, mostrando mais
uma vez a supremacia da lei da gravitacdo de Newtonﬂ

Em 1882, o astrdbnomo Simon Newcomb corrigiu al-
gumas inconsisténcias na massa planetdria e repetiu os
célculos de Le Verrier. Ele descobriu um deslocamento
extra no periélio de Mercurio de 43” por século (NEW-
COMB,, [1882), um pouco maior que o resultado ante-
riormente obtido. Os dados observacionais analisados
por Newcomb mostravam que a precessdo de Mercurio
era de 574, 83” por século (NEWCOMB|, |1898)).

Como a “massa faltante" estava, a essa altura, fora
de questdo, ele pensou que o problema poderia estar na
lei da gravitacdo de Newton. Newcomb ponderou que
se o expoente, na lei do inverso do quadrado da distan-
cia, fosse 2,00000016 ao invés de 2, entdo o movimento
de Merctirio poderia ser explicado com maior precisao.

O raciocinio de Newcomb representou uma verda-
deira mudanga de paradigma. Enquanto, anteriormente,
as observacdes eram questionadas e a teoria de Newton
era inatacavel, os cientistas ao final do século XIX co-
mecavam a questionar as fundagdes da lei de gravitagdo
cléssica.

Do ponto de vista observacional, o problema estava,
essencialmente, fechado. Em contraste, o que existiria
de “errado” com a lei da gravitacdo de Newton passou
a ser considerado um problema em aberto. Estavam ge-
radas as condi¢des para que surgisse uma nova teoria
de gravitacdo — A Teoria da Relatividade Geral de Eins-
tein.

Na Segdo 2] apresento o “célculo cldssico” para o
avango do periélio de Merctirio, enquanto na Segdo[3],
apresento os principais conceitos envolvidos com a de-
terminagdo da anomalia desse planeta no ambito da
TRG de Einstein. A Segdo [4] apresenta as considera-
¢des finais deste trabalho.

SUm interessante texto biografico sobre Urbain-Jean-Joseph Le
Verrier pode ser encontrado no artigo de Laskar|(2017).
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2 Precessao do Periélio de Mercurio: Aborda-
gem Classica

No ambito da mecanica cldssica de Newton € possivel,
precisamente, modelar a for¢a gravitacional que cada
planeta deveria exercer sobre Mercuirio. Uma aproxi-
magdo que considero bastante elegante, e acessivel, foi
publicada em 1979 (PRICE; RUSH,|1979).

Os autores substituiram cada um dos planetas ex-
ternos a Mercidrio por “anéis de massa" , cada um
caracterizado por sua respectiva densidade linear de
massa uniforme. Como Merctrio apresenta lenta pre-
cessdo, quando comparada com as Orbitas planetarias
até Urano, a abordagem de Price e Rush produz uma
estimativa bastante precisa para descrever os efeitos dos
planetas externos sobre a 6rbita de Mercturio.

Como mencionado acima, cada planeta é substi-
tuido por um anel com densidade linear de massa des-
crita pela seguinte equacio:

M;

i = — ) 1
27TR1‘ ()

sendo \; a densidade linear de massa do i-ésimo planeta
a partir do Sol, M; a massa do i-ésimo planeta e I?; o
raio da 6rbita, que € considerada circular.

O campo gravitacional de cada planeta exterior a
Merctrio € aproximado como um anel circular, e uni-
forme, centrado no Sol e no plano definido pela 6rbita
de Mercirio, conforme Figura[l]. Um ponto de massa
m estd colocado sobre a linha ABC' e a distincia a do
centro C' do anel de raio R.

Figura 1: Forma como as forcas gravitacionais sdo calculadas sobre
a massa m, que estd situada a distncia a do centro de um anel com
densidade linear uniforme de massa (\;). Figura adaptada pelo autor
a partir da original publicada em Price e Rush|(1979).

O anel € dividido em elementos diferenciais de
massa. Em particular, a Figura |I| mostra os elementos

mq € dms que estio localizados num angulo « da li-

d d tdo localizad 1 dal

nha . Considere ds; € dss 0s arcos subentendidos
ha AB. C dere d d bentendid

pelo elemento diferencial angular da e que estdo, res-

pectivamente, associados com os elementos de massa
my mo. a ,Sea

dmied Entao podemos escrever, se a << R

dm; = Ads; >~ M;da, 2)

onde [; é a distincia de m ao anel (vide Figura|I|) el
pode assumir os valores 1 ou 2.
A lei da gravitagdo de Newton permite entdo escre-

ver p p
dF = Gm (m - m) i 3)
Ii 5
sendo 1 um vetor unitério ligando m a dm.
Substituindo a Equagdo 2]na[3] vem

dF = GmA (l2 - ll) 1da. )
lils
Por simetria, os tinicos componentes de dF que afe-
tam m sdo os que estdo sobre a linha AB. Os com-
ponentes perpendiculares de dF se cancelam. Dessa
forma, atuara sobre m um elemento diferencial de forca

dF, dado por
dF, = dF cos a. (®)]

Se T é um vetor unitario na dire¢@o radial, nds po-
demos integrar a Equacdo[5] para obter

[T I —h
F=r GmA i cosada, (6)

—n/2 1l

sendo que os valores escolhidos para os limites de inte-
gragdo permitem cobrir todo o anel.

Através da lei dos cossenos torna-se possivel relaci-
onar o com /g e l5. Em particular,

R? = a® + 13 — 2al; cos(m — a). @)

Essa equagdo quadritica permite obter a solucdo
para /; como

2 2

Iy = —acosa + [a® cos® a — (a® — RQ)]l/Q.

®)
A escolha do sinal para a raiz da Equagdo 8¢ a que
satisfaz o requerimento fisico de que para o = 0 tenha-
mos Iy = R — a (vide Figura[l]).
No6s podemos repetir o processo de forma a obter
para [y

Iy =acosa+ [a® cos® a — (a® — R?)] 12 )

onde a Equagdo [9] permite obter Iy = R + a quando
a=0.
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Substituindo as Equagdes [8]e[9]na Equagdo[6] vem

2% A +7/2
F= " r/ cos?ada,  (10)
R? —a —m/2
que nos permite entdo escrever
Gmmal; \ .
F, = (M) . (11)

A Equagio [[I] permite determinar a forca radial
exercida sobre Merctirio pelo i-ésimo planeta. O pa-
rimetro a fornece a distincia de Mercurio ao Sol, en-
quanto ¥ € um vetor unitdrio para a posicdo de Mercu-
rio.

Como R; > a, F; emﬂ;fl é positivo, de forma que
a forca exercida sobre Merctrio, por cada planeta ex-
terno, € direcionada para fora, oposta a forca exercida
pelo Sol.

Agora, vamos nos referir a alguns resultados da me-
canica cléassica, considerando que as 6rbitas dos plane-
tas sejam estdveis e fechadas. Sabemos que o momen-
tum angular J de uma massa m, que se move em relagdo
a um ponto O, € definido por

J=rxp, (12)

onde o simbolo x representa o produto vetorial, p =
mi = mv é o momentum linear de m e o ponto re-
presenta dervivada com relacdo ao tempo (isto é, T =
dr/dt = v). Veja que v é a velocidade orbital de m.

A evolugd@o no tempo do momentum angular pode
ser obtida através de

J=rxp+rxp. (13)

O primeiro termo do lado direito da Equacdo [I3]é
igual a zero, visto que I = v. Isto é, os vetores I e
p estdo no mesmo plano, o que faz com que o produto
vetorial deles seja igual a zero.

Por outro lado, fazendo uso da segunda lei de New-
ton, na forma F = p, na Equacdo[13] vem

J=rxF(r)=rxd(r)f, (14)

onde ®(r) é o médulo da forga total aplicada sobre m.

Como r = rT entdo a Equacdo |14{ retorna J=o.
Assim, J € uma constante do movimento em relagdo ao
ponto central O, significando que o movimento de m
por agdo da forca ®(r) ocorre sempre no mesmo plano.
Ou seja, o plano da érbita ndo muda a medida que o
planeta orbita o Sol.

Visto que, o movimento orbital ocorre num plano
perpendicular ao vetor constante J, torna-se mais con-
veniente usarmos coordenadas plano-polares em que

r=rt e v:¢f+réé, (15)
com a equagio para a aceleracio dada por
a=t=F—r0)F+(rd+24)0. (16

A Figura 2] , extraida do capitulo 14.6 de
[GAWSKI e COLIN]| (2015)), apresenta as coordenadas
plano-polares para descrever o movimento de um pla-
neta ao redor do Sol.

Ao leitor interessado no aprendizado, e compreen-
sdo das diversas aplica¢des, do cdlculo diferencial e in-
tegral, recomendo essa referéncia.

Z

JJ

y

Figura 2: Coordenadas polares (r,f) para descrever o movimento
orbital de um planeta ao redor do Sol. O deslocamento estd contido
no plano ortogonal ao vetor momentum angular J. Figura extraida de
[ROGAWSKT e COLIN| (2015). Esses autores representam a derivada
em relacdo ao tempo através do apéstrofo, de formaquer’(t) = v =
dr/dt.

O primeiro termo do lado direito da Equagio[I6]¢é o
componente radial da acelerac¢do produzida sobre o pla-
neta. Fazendo uso da segunda lei de Newton, podemos
escrever

(r) = m(i —r6?). a7
Substituindo a Equagdo[T5]na[T2], obtemos
J=rx(mv)=mrix(Ft+r00), (18)
que resulta em
J=mr?0(# x6). (19)

O produto vetorial de  com 6 fornece a orientagao
do vetor J. Observe a Figuraem que ¥ x 6 = 2.
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Assim, temos para o médulo do vetor J:
J=mnr?. (20)

Podemos fazer uso da Equacio 20| na[I7)de forma a

obter
. J?
@(7‘) =m <7" - 777/27“3> .

Para o caso particular de 6rbita circular com raio
a, temos i = 0 de forma que a Equacdo [21] pode ser
reescrita como

2

J2

mad’

®(a) = —

(22)

Caso o planeta seja ligeiramente perturbado no
plano da sua 6rbita, e se a perturbag@o for normal a sua
trajetoria inicial, ele oscilard ao redor de a. Definindo
uma nova varidvel x = r — a e expressando a Equa-
¢do 21] do movimento radial em fungdo de r = a + x,
torna-se possivel escrever, com auxilio da Equacdo[22],
a seguinte relacao

d(x+a) = mi—J*m Y (z+a)? (23)
-3
= mi—J*m a3 (1 + E)
a
Observe o lado direito da Equagdo 23] . Como

x/a << 1 entdo nés podemos expandir o termo dentro
dos parénteses através de um bindmio, retendo apenas
os termos de primeira ordem. Por outro lado, ®(x + a),
do lado esquerdo da igualdade, pode ser expandido em
série de Taylor ao redor do ponto » = a. Novamente,
retemos apenas os termos de primeira ordem ﬁ Dessa
forma, a Equagdo 23] pode ser reescrita como

i+ <;) [— <2) B(a) — @'(a)} =0, (4

onde ®’(a) = d®/dr calculada no ponto r = a.

A Equagio [24] descreve um oscilador harmonico se
o termo dentro dos colchetes for positivo. Se esse termo
for negativo, as oscilacdes crescerdao de forma exponen-
cial com o tempo, o que tornard a 6rbita instavel.

A equagdo de um oscilador harmonico tem a forma
geral dada por

&+ w?z =0, (25)

60 leitor que tenha feito um ano de calculo diferencial e integral
pode verificar os passos intermedidrios de desenvolvimento. Isto &,
como chegar na Equagdo 24] a partir da 23]. De toda forma, reco-

mendo o texto ROGAWSKI e COLIN|(2015) em caso de duividas.

sendo w a frequéncia angular das oscilacdes, que se
relaciona com o periodo T, das oscilagdes, através de
w=2m/T.

Dessa forma, para 6rbitas estdveis, podemos obter o
periodo das oscilagdes ao redor do ponto = a como

1/2
m /

T=2 | 3 a)d(a) — @/(a)

(26)

Por defini¢do, “apside” é o ponto de maior ou de
menor distdncia, medido a partir do eixo maior de uma
elipse, separando um objeto celeste do centro da atra-
¢ao gravitacional (que estd colocado num dos focos da
elipse).

O ponto mais distante do centro da atragdo gravi-
tacional é chamado de “apoapside” (ou apocentro), en-
quanto o ponto mais préximo é chamado de “periap-
side" (ou pericentro). Quando o centro da atragdo gra-
vitacional € o Sol, o apocentro passa a se chamar “afé-
lio" , enquanto o pericentro passa a ser chamado de “pe-
riélio" .

Na Figura [ pode-se observar o comportamento da
6rbita de Merciirio ao redor do Sol. E possivel ver a
“precessdo apsidal" da orbita desse planeta. O angulo
apsidal (¥) € o angulo formado entre duas apsides con-
secutivas. E a partir desse ngulo que podemos determi-
nar a taxa com que o periélio de Mercirio precessiona.

Mercurio

Figura 3: A 6rbita de Merciirio ao redor do Sol. Pode-se identificar
a precessdo apsidal, que é medida através do angulo . Veja que o
eixo maior da elipse, com o Sol num dos focos, permite identificar,
para cada uma das 6rbitas, tanto o afélio quanto o periélio. Figura
produzida pelo autor.

O tempo necessario para Mercurio cobrir o dngulo
U é igual a T'/2. Como r terd “aproximadamente" o
valor a, a precessdo da Orbita com o tempo pode ser
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absorvida através de ¢ (vide Figura [2|). Assim, com
auxilio da Equagdo[20] podemos escrever (com r = a)

1 .
=T
2

1

Por outro lado, usando a Equacdo[22]na[27) vem

@:W{3+a[§)'(f)>”_m.

Note que nesse resultado, ®(a) é a forga central li-
quida e a € o raio da 6rbita circular que esta sendo per-
turbada.

Agora, podemos usar a Equagdo[T1|para encontrar a
soma das forgas de todos os anéis planetdrios externos
a Mercdrio. Isto €,

(28)

6
i
F(a) = GrmY_ Rzi—acﬁ — 7,587 x 10N, (29)
=2 ?

O valor numérico foi obtido substituindo as massas
e os raios orbitais de todos os planetas externos a Mer-
cirio[]

Note que fizemos uso da Equac@o[I]que permite re-
lacionar massa e distincia orbital de cada planeta e a
somatdria em @l refere-se aos planetas Vénus, Terra,
Marte, Jupiter e Saturno, de forma que a soma vai de 2
até 6. O valor ¢ = 1 corresponde a Merctrio.

A forca gravitacional exercida pelo Sol sobre Mer-
curio é

M,
Fo(r) =& 5 = —1,318 x 102N,

(30)

onde M, representa a massa do Sol.
Assim, a for¢a liquida que Merctrio experimenta é

®(a) = Fo + F(a). 31)

No6s podemos agora determinar o dngulo ¥ na Equa-
¢do[28]. Para isso, precisamos de ®(a) e de sua derivada
o' (a).

70s leitores interessados nos valores numéricos, para as mas-
sas e raios orbitais dos planetas, poderdo encontrar facilmente es-
sas informagdes no curso, on-line sobre Astronomia e Astrofisica,
dos Professores Kepler de Souza Oliveira Filho e Maria de Fitima
Oliveira Saraiva do Instituto de Fisica da Universidade Federal do
Rio Grande do Sul (IF-UFRGS). Veja, em particular, o hiperlink
<http://astro.if.ufrgs.br/ssolar.htm>|
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2 {2“ TR @«J/z} ()

Dessa forma, diferenciando a Equagdo [31] e multi-
plicando por a vem

a®’(a) = a[F,(a)+ F'(a)] (32)
A derivada da Equagio [30] fica
2G'M,
aFl(a) =a <G3®m> — 92F,. (33
a
Quanto a derivada da Equag@o[29], temos
o R? +a?
!/ (3
aF (a) = Gﬁma;Aim

= GmmaS, (34)

onde o termo em somatdria foi definido como a funcéo
S.

Substituindo o conjunto de Equacdes [29] a 34] na
28] vem

GmmaS — 2Fg —1/2 (35)
F@ + F(a) ’

que pode ser reescrita como

\PW[3+

_ _[1+BF(a) + GrmasS)/Fo —1/2
Y= { T+ [F(a)/Fo)] } - 09

Podemos fazer uma expansdo binomial para o nu-
merador ¢ o denominador da Equacdo [36] visto que
F(a) << Fg e F(a) é da mesma ordem que o termo
GmmasS. Assim, obtemos apés negligenciar os termos
de ordem maior que a primeira da razdo F'(a)/Fp

B _ 3F(a) + Gmma$ F(a)
\I/—w{l T H1+ F@}. (37)

Efetuando a multiplicag¢do e negligenciando os ter-
mos de segunda ordem, vem

F(a) GmmaS
U=n(1- _ Lmmas
W( Fo 2Fy )

Fazendo uso das massas e raios orbitais dos plane-
tas, torna-se possivel obter ¥ como

(38)

U =7(1+9,884 x1077). (39)

A taxa com que o periélio de um planeta precessiona
pode ser obtida diretamente do dngulo apsidal através
da equag@o

o 20 — 27 (1,977 x 107°)

P 87,969 dias

(40)
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onde P € o periodo sideral do planeta (para Merctrio
P = 87,969 dias).

Ap6s converter para segundos de arco por século,
obtemos

w = 531,9” por século. 41

Como mencionado na Seg¢éo |I| , 0 valor atual total
para a precessdo do periélio de Merctrio é de, aproxi-
madamente, 575" por século (NEWCOMB| |1898)). As-
sim, existe uma diferenca (anomalia) de 43” por século
que ndo pode ser absorvida na teoria Newtoniana.

Contudo, como veremos na Secao |§|, essa “‘anoma-
lia" pode ser perfeitamente absorvida na TRG de Eins-
tein.

3 Precessiao do Periélio de Mercurio: Aborda-
gem Relativistica Geral

Em 18 de novembro de 1915, Finstein apresentou a
Academia Prussiana de Ciéncias seu trabalho, cujo ti-
tulo € Explicacdo sobre o Movimento do Periélio de
Merciirio a partir da Teoria da Relatividade Geral.

Einstein relatou, nessa palestra, que o movimento
do periélio de Mercirio poderia ser bem explicado
(EINSTEIN| [1915a)) pela nova teoria de gravitacio que
ele havia apresentado poucos dias antes, entre 4 e 11
de novembro de 1915 (EINSTEIN| [1915b; EINSTEIN,
1915¢)).

A TRG de Einstein entende a gravitagdo como re-
sultado da “curvatura do espago-tempo" . A forma mais
direta de vocé entender a gravitacdo, no contexto da
TRG, € imaginar uma cama eldstica bem esticada repre-
sentando o espago-tempo. Colocando uma esfera densa
e massiva no centro da cama eldstica, esta se curvara.
Isto €, a cama elastica se deformara ao redor da esfera
massiva.

Coloque agora uma bolinha nas proximidades dessa
esfera massiva. Vocé€ observard seu deslocamento em
direcio a parte mais curvada da cama eldstica. E algo
parecido a esse exemplo que ocorre com O espaco-
tempo — o “tecido que permeia todo o Universo" .

Na presenca de um objeto massivo, 0 espagco-tempo
se curvard, fazendo com que corpos de menor massa, €
até mesmo a propria luz, desloquem-se em dire¢do ao
objeto que atuou como fonte da curvatura do espago-
tempo (MIRANDA| 2019). E esse efeito que chama-
mos de forca gravitacional (vide Figura[d]).

As equacdes de campo da TRG de Einstein sdo es-
critas na forma

8r G

1
Ruu - §Rgm/ = 7TNV7

- 42)

Figura 4: O espaco-tempo sendo curvado pela presenca de um ob-
jeto massivo (Sol, neste exemplo). Um objeto de menor massa (Terra,
neste caso) sente essa curvatura e se desloca descrevendo o movi-
mento orbital. Veja que a Terra também produz curvatura do espago-
tempo ao seu redor. Contudo, a deformagdo € mais acentuada na vi-
zinhanca do Sol, por este possuir massa muito maior que a do nosso
planeta (MIRANDA| 2019) . A Figura foi produzida por Schwarza,
Divulgador e Youtuber do Canal Poligonautas.

onde R,,,, € o tensor de curvatura de Ricci, R € o escalar
de curvatura, g,,,, € o tensor métrico, G ¢é a constante de
gravitacdo universal, ¢ € a velocidade da luz no véicuo e
T,,,, € o tensor energia-momentum.

Os indices 1 e v podem assumir os valores 1, 2,
3e4d ﬂ Matematicamente, tensores de posto 2 (dois
indices, no caso, u e ) sd@o matrizes de nimeros, ou
de fungdes, que se transformam de acordo com certas
regras sob uma mudanga de coordenadas. Assim, na
TRG, os tensores sdo representados através de matrizes
4 x 4.

Na fisica, os tensores caracterizam as propriedades
de um dado sistema. Um tensor pode consistir de um
unico nimero, sendo neste caso chamado de tensor de
posto zero ou, simplesmente, escalar. Exemplos de es-
calar sdo: massa de uma particula, volume de um pla-
neta, temperatura de uma estrela ...

Exemplos de campos escalares sdo a densidade de
um fluido em fungdo da posicdo. Outro exemplo é a
energia potencial gravitacional em func¢do da posicdo.
Note que ambos, densidade e energia potencial gravita-
cional, sdo nimeros tnicos (fun¢des) que variam conti-
nuamente de ponto a ponto, definindo assim um campo
escalar.

O préximo tensor € o de posto um, também conhe-
cido com o nome de vetor. No espago tridimensional
comum, um vetor tem trés componentes (contém trés
ndmeros ou trés func¢des da posi¢do). No espago-tempo
de quatro dimensdes, um vetor tem quatro componentes
(trés componentes espaciais e uma temporal).

Um vetor pode ser considerado uma matriz coluna

8Utilizarei nesta Se¢dio a mesma notagdo dos trabalhos originais
de Einstein.
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ou linha, dependendo do arranjo de termos (a dimensao,
entdo, seria n X 1 ou 1 X n). Isso ocorre porque os
componentes de um vetor podem ser visualizados como
sendo escritos em uma coluna ou ao longo de uma linha.

Acima de um vetor estio os tensores de posto 2, que
sdo organizados na forma de matrizes. Assim como 0s
vetores representam propriedades fisicas mais comple-
xas do que os escalares, as matrizes representam pro-
priedades fisicas ainda mais complexas do que as que
podem ser manipuladas por vetores|’|.

Voltando a TRG de Einstein, a curvatura do espaco-
tempo, que da origem a gravidade, é descrita pelo ten-
sor de Ricci. Este, por sua vez, € obtido a partir de um
tensor de curvatura, mais geral, de posto 4 (quatro in-
dices como, por exemplo, p, v, £ e 3), que é chamado
tensor de Riemann. A caracteriza¢do da curvatura do
espaco-tempo € entdo obtida através do tensor 17, € de
seu escalar R na Equagdo[42].

Outro tensor presente nessa equagdo € o tensor mé-
trico g,,,,. Métrica significa um padrdo de medida. For-
malmente, o tensor métrico atua num espago vetorial
“recebendo” vetores e “retornando” nimeros. E o ob-
jeto matemadtico que permite definir rigorosamente me-
didas de comprimento (ou de distincia entre dois pon-
tos) além de angulos num dado espaco.

Na representacdo matricial, os niimeros reais que
descrevem os componentes desse tensor dependem do
particular sistema de coordenadas que estiver sendo uti-
lizado. Contudo, o tensor métrico sempre terd a propri-
edade de receber vetores e retornar nimeros com uteis
informagdes sobre a geometria do espaco em estudo.

Em termos de coordenadas, na notagdo usada por
Einstein, o componente 4 representa a coordenada tem-
poral do espaco-tempo. As tré€s coordenadas espaciais
sdo representadas como 1, 2 e 3.

Se trabalharmos em coordenadas cartesianas, entdo
na TRG, respectivamente, descrevem z, y, z € t. No
caso de coordenadas esféricas, descrevem r, 0, ¢ e t.
De forma geral, as coordenadas sdo representadas como
x1, T2, T3 € T4 com a coordenada temporal sendo 4.

Veja que o lado esquerdo da Equacdo [42) apresenta
grandezas puramente geométricas, isto é, curvatura,
medidas de distancias e dngulos. Ja do lado direito de
@ , nds temos o tensor T}, que descreve os campos
de matéria e radiagdo presentes numa dada regido do
espago-tempo.

Assim, os fisicos dizem que as equacdes da TRG de
Einstein, representadas em@, relacionam a geometria

9Procuramos neste trabalho introduzir o conceito de tensores de
forma mais simples e natural. Aos leitores interessados em compre-
ender o conceito de tensores com maior rigor matemadtico, sugiro o
excelente texto de|SYNGE e SCHILD|(1978).

(lado esquerdo) com a fisica (lado direito). Isto é, maté-
ria e radiacdo dizem ao espago-tempo como se curvar;
por outro lado, a curvatura diz as matéria e luz como
elas devem se comportar.

A forca gravitacional é o resultado desse acopla-
mento entre a curvatura do espago-tempo € 0s campos
de matéria e radiacdo que permitem a tudo descrever
(planetas, estrelas, galdxias, particulas, luz ...) no Uni-
Verso.

Em 1915, Einstein comegou a determinar g,,,, para
o Sol. O sistema solar pode ser encarado como uma
massa isolada, que estd longe de outras massas no Uni-
verso. Quase 99 por cento da massa total do sistema
solar estd concentrada no Sol.

Assim, podemos tratar os planetas como pontos de
massa que se movem nho campo gravitacional estatico
do Sol. Dentro do sistema solar, pode-se negligenciar o
potencial gravitacional dos planetas e lidar apenas com
o potencial gravitacional do Sol, considerando-o como
uma estrela com simetria esférica.

Por causa da distancia separando o planeta da massa
central, a curvatura do espaco-tempo vai gradualmente
diminuindo a partir do Sol, tornando-se plana a gran-
des distancias. Essas foram as condi¢des que Einstein
impds ao campo gravitacional do Sol.

A partir desse raciocinio, ele iniciou seu cdlculo to-
mando as Equacdes [42]escritas para o vécuo (o que sig-
nifica tomar 7),, = 0), obtendo entdo

are
Hy a B

o +) o, =0,
« ap

onde I'}}, sdo os componentes do campo gravitacional
determinados através de

(43)

1 dg
re —_- af3 B
v 9 25:9 <5$u +

Adicionalmente, Einstein usou /—¢g = 1 como condi-
¢ao para as coordenadas.

O lado esquerdo da [43] € o tensor de Ricci, que
engloba o tensor métrico e suas derivadas. As Equa-
¢Oes (3| sdo ndo lineares por causa de I'};,,.

Em seguida, ele partiu da chamada aproximacdo de
ordem zero, em que g,,,, corresponde a teoria da relati-
vidade especial (ou a chamada “métrica plana de Min-
kowski" ). Isto é,

agl/,@ agm/
- . (44
0z, 0%, “4

gy = diag (—1,—-1,—1,41),

onde “diag" significa que os tinicos elementos néo nulos
sd0 os que pertencem a diagonal da matriz de represen-
tagdo do tensor g,,,,. Veja que g11 = g22 = g33 = —1

(45)
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sdo os componentes espacias do tensor métrico, en-
quanto g44 = +1 é o componente temporal.
Einstein escreveu a Equacdo 3] como

9po = §pa> 9pa = G4p = 0, 944 = 1, (46)

onde os indices p e o significam 1, 2 e 3. O delta de
Kronecker (,,) é igual a 1 se p = o e € igual a zero se
p#o.

A aproximagdo representada na Equagdo [6] ¢ a
aproximacdo de ordem zero. Einstein entdo assumiu
que g,,,, difere dos valores dados na Equacdo |Z_3| por
uma pequena quantidade quando comparada a 1, tra-
tando esse desvio como uma pequena mudancga de “pri-
meira ordem”. A solugio para o campo métrico g,,,, tem
quatro propriedades, que implicam em quatro proprie-
dades para o campo gravitacional do Sol:

e A solucio € estdtica. Todos os componentes da so-
lucdo sdo independentes da coordenada temporal

(T4).

e A solugio g, € esfericamente simétrica em rela-
¢do a origem do sistema de coordenadas.

e As equagdes gp4 = g4, = 0 sdo vilidas para p =
1,2,3.

¢ No infinito, g, tende aos valores da métrica plana
de Minkowski da relatividade especial, como re-
presentado na Equagéo [46].

Para primeira ordem, as quatro condigdes acima for-
necem a seguinte solugdo

TpTo
r3

Gpr = —0po — @ gu=1-= @)
onde g,, tende a métrica de Minkowski, conforme
Equagio [46], através da quarta propriedade acima, en-
quanto g,4 € g4, sdo determinados pela terceira propri-
edade.

E direto verificar que as quatro propriedades, para o
campo gravitacional do Sol, sdo preservadas pela solu-
¢do de primeira ordem representada em [d7]. Para isso,
basta substituir a solugdo [#7) nas Equagdes [@3|e[d4].

A quantidade r é obtida como

r=/z%+ 23+ 23, (48)
enquanto o é
2GM
a=—, (49)
c

com M sendo a massa do Sol.

Posteriormente, Einstein obteve o valor para os
componentes do campo gravitacional do Sol em se-
gunda ordem. Ele escreveu as equag¢des de movimento
para uma massa pontual movendo-se sob acdo do Sol.
Um planeta em queda livre sob acdo de um campo
gravitacional move-se em uma linha geodésica (s) de
acordo com a equagdo (EINSTEIN| 1915a))

d*z, B r
ds2 Z
oT

A Equagdo 50| contém as equagdes Newtonianas
de movimento como uma primeira aproximagdo. As-
sim, Einstein calculou as equacgdes das linhas geodési-
cas e comparou-as com as equacdes Newtonianas das
orbitas dos planetas no sistema solar. Ele verificou
que havia correspondéncia entre a relatividade geral e
a teoria de Newton, em que a atracdo gravitacional é
uma forca central e todos os planetas movem-se em um
plano constante em torno do Sol (vide Segﬁo|2|).

Portanto, nas coordenadas polares, 0 movimento so-
bre esse plano depende da distincia r, do planeta ao
centro de massa do sistema, e do angulo formado entre
a linha que conecta o planeta ao centro e uma linha de
referéncia escolhida arbitrariamente (vide, em particu-
lar, a Figura[2]). Assim procedendo, obtemos a equagdo
da 6rbita planetdria, cuja solucdo para o caso Newtoni-
ano descreve uma elipse.

O periélio da érbita é o ponto em que o planeta estd
mais proximo do Sol. Como pode ser visto na Figura
[] o eixo principal da elipse, descrita por Merciirio, gira
lentamente em torno do Sol. Essa é a precessdo do pe-
riélio, sendo mais pronunciada quanto maior for a ex-
centricidade e da 6rbita.

Na teoria de Einstein, a Equacdo [50] leva a uma
equagdo relativistica para as orbitas planetdrias. Eins-
tein descobriu que a diferenga entre as equagdes orbitais
(Newtoniana e relativistica) estava em um termo adici-
onal 2G M /c?r3.

Com essas aproximacdes, Einstein obteve a forma
como a curvatura do espago-tempo influencia o angulo
apsidal. Isto é,

v 2o dzr
7T ds ds

(50)

3 a
UV=pg|ld+t-——-r-—"-—]. 51
”[ +2a<1e2>} ob
Assim, a cada 6rbita o periélio avanca
w=20 -2 = 31— _ (52)
= ™= Wa(l—eQ)'

Usando os valores para a massa do Sol (M), o semi-
eixo maior da orbita (a) e excentricidade da érbita (e),
torna-se possivel reescrever a Equagio |3_Z| como
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w=mx1,60355 x 10~". (53)

A taxa com que o periélio de Merctirio precessiona
¢é entdo
. w  7(1,60355 x 1077)
w=—= -
P 87,969 dias
O resultado da contribuicdo de efeitos relativisticos
gerais para w €, dessa forma,

(54)

w = 43,17 por século. (55)

Somando o previsto pela teoria Newtoniana (#1)
com a “anomalia" associada com a curvatura do espaco-
tempo (33)), ndés obtemos o valor w = 575 por século
para a precessdo do periélio de Merctrio. Valor que estd
em acordo com os dados observacionais.

Esse foi o primeiro triunfo da Teoria da Relatividade
Geral. Em particular, Einstein concluiu seu trabalho de
1915 (EINSTEIN| [19154) escrevendo:

“O cdlculo produz, para o planeta Merciirio, um
avango do periélio de 43" por século, enquanto os as-
tronomos indicaram 45” £ 5”7 por século como uma
diferencga inexplicdvel entre as observacdes e a teoria
Newtoniana. Esta teoria, portanto, concorda comple-
tamente com as observagoes" E'

4 Consideracoes Finais

Neste trabalho, cobrimos cerca de quatro mil anos de
estudos sobre os movimentos planetdrios. Partindo da
antiga Mesopotimia cerca de 2.000 a.C., em que os mo-
vimentos planetdrios comecaram a ser registrados de
forma sistematica, passando pela contribuicio dos gre-
gos na construgdo dos primeiros modelos destinados a
explicar o “funcionamento do sistema solar" , nds co-
brimos vinte séculos de histéria. O modelo Geocén-
trico, estruturado durante esse periodo, perpetuou-se até
a idade média quando foi gradativamente sendo substi-
tuido pelo modelo Heliocéntrico.

Galileo Galilei e, em particular, [saac Newton foram
responsdveis por um gigantesco salto na compreensao
do movimento planetario, bem como da estruturagdo da
drea do conhecimento que hoje chamamos de “fisica".
Até o inicio de 1781, além da Terra, eram conhecidos os
mesmos cinco planetas que os povos da Suméria estu-
davam e acompanhavam através de registros feitos em
escrita cuneiforme. Nesse ano, William Herschel des-
cobriu Urano de forma acidental.

10A0s interessados em seguir o raciocinio completo de Einstein,
sobre a “anomalia” do periélio de Merctirio, sugiro acessar o hiper-
link da referéncia Einstein|(1915a) na qual as notas desta Sec¢do estdo
baseadas.

Com base na bem estabelecida teoria de gravita-
cdo Newtoniana, um novo salto no estudo do sistema
solar foi dado por Urbain-Jean-Joseph Le Verrier que
concentrou-se no célculo preciso das drbitas planeta-
rias. Le Verrier previu a existéncia de mais um planeta
no sistema solar — Netuno — encontrado posteriormente
no quadrante do céu que ele, matematicamente, havia
identificado.

O sucesso alcancado pela teoria Newtoniana da gra-
vitacdo esbarrou na observada “anomalia" de Merctrio.
Le Verrier desenvolveu um seminal trabalho matema-
tico, mostrando que a Orbita de Mercurio lentamente
precessionava por influéncia do campo gravitacional do
Sol e dos demais planetas em Orbitas externas a Mercu-
rio.

Ele obteve, a partir dos seus célculos, o valor de
526,7 segundos de arco por século, enquanto a preces-
sdo observada era de 565 segundos de arco por século.
Essa diferenca de 38” por século configurava-se numa
“anomalia" que nao podia ser explicada pela gravitacdo
Newtoniana.

A partir do sucesso alcangado com a previsdo do
planeta Netuno, Le Verrier chegou a propor a existéncia
de um novo planeta, chamado Vulcano, em 6rbita in-
termercurial. Com base nas observacdes do astrdnomo
amador Lescarbault, Le Verrier calculou a distincia de
Vulcano em relag@o ao Sol, obtendo 0,147 unidades as-
trondmicas. O hipotético planeta possuiria periodo or-
bital de 19 dias e 17 horas.

Apds diversas tentativas de observar Vulcano, a
comunidade cientifica foi gradativamente deixando de
acreditar na existéncia desse planeta. Simon Newcomb,
em 1882, corrigiu algumas inconsisténcias na massa
planetdria e repetiu os cdlculos de Le Verrier, deco-
brindo um deslocamento extra no periélio de Merctrio
de 43” por século. Os dados observacionais, naquela
época, mostravam que a precessdo de Merctrio era de,
aproximadamente, 575” por século.

Newcomb ponderou que se o expoente, na lei da
gravitacdo de Newton, fosse 2,00000016 ao invés de
2, entdo o movimento de Merctrio poderia ser expli-
cado com maior precisdo. Esse raciocinio configurou-
se numa mudanca de paradigma. Anteriormente, as ob-
servacdes eram questionadas e a teoria de Newton era
inatacdvel. A partir dessa andlise de Newcomb, os ci-
entistas ao final do século XIX comegavam a questionar
as fundagoes da lei de gravitagdo cldssica.

Isso abriu caminho para que Einstein introduzisse,
em 1915, uma das mais belas teorias da fisica — a Teo-
ria da Relatividade Geral. A forca gravitacional passa
a ser tratada como uma resposta a curvatura do espago-
tempo, tecido que permeia todo o Universo. No mesmo
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artigo em que descreve a sua teoria de gravitagdo, Eins-
tein mostra que a “anomalia” de 43” por século, na pre-
cessdo do periélio de Mercturio, pode ser perfeitamente
explicada com base na sua teoria.

No ano seguinte, Einstein submeteu ao periédico
Annalen der Physik um artigo de revisdo sobre a Teoria
da Relatividade Geral (EINSTEIN| 1916) . Ele derivou
a equacgdo para a deflexdo de um raio de luz vindo de
uma estrela de fundo e passando préximo ao Sol.

Em funcdo do sucesso da TRG em explicar a “ano-
malia" de Mercurio, em 1915, e da previsao de que raios
luminosos de estrelas distantes seriam curvados pelo
Sol, feita em 1916, a comunidade cientifica preparou-
se para esse segundo teste da teoria de Einstein.

A confirmacdo dessa previsao foi obtida por ocasido
do eclipse total do Sol ocorrido no dia 29 de maio de
1919, visivel na Ilha de Principe (Africa) e em Sobral
(Ceara — Brasil).

Em poucos anos, a nova teoria de gravitagdo encan-
tou os cientistas por sua beleza conceitual e pelas pre-
visdes sucessivamente confirmadas através de observa-
¢des e experimentos.
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