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Resumo. A proposta da presente contribuição é descrever como a Relatividade Geral, na qualidade 
de uma teoria elaborada para investigar a estrutura do espaço-tempo e suas propriedades geométricas, 
estimulou, no século passado, a introdução de novas dimensões de natureza espacial e temporal para a 
nossa compreensão das interações fundamentais, possibilitando um harmoniosa junção da micro com a 
macrofísica.
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Abstract. This contribution sets out to describe how General Relativity, as a theory to inspect the space-
time strucuture and its geometrical properties, triggered, throughout last century, the idea of new space-
and time-like dimensions to understand features of fundamental interactions, allowing a perfect matching 
between micro- and macrophysics.
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      A Teoria da Relatividade Geral (TRG), proposta por 
Einstein em 1915 (EINSTEIN, 1915), não só incorpo-
rou a abordagem de Newton para o campo gravitacio-
nal, mas, sobretudo, apresentou previsões de longo al-
cance, como o desvio para o vermelho de origem gra-
vitacional, a precessão do periélio da órbita de Mercú-
rio, a deflexão de feixes de luz em um campo de gravi-
dade, a existência de ondas gravitacionais e de buracos 
negros. Estas duas últimas antecipações tiveram a sua 
descoberta anunciada em Fevereiro de 2016, portanto, 
antevisões que aguardaram um século a sua comprova-
ção. De fato, a observação das ondas gravitacionais 
produzidas pela fusão de dois buracos negros, um de 36 
e outro de 29 massas solares constitui-se, na época, 
como a mais concreta evidência da existência de 
buracos negros (ABBOT, 2016). Muito importante 
também destacar o impacto da Relatividade Geral para 
a Cosmologia no celebrado trabalho de Einstein de 
1917 (EINSTEIN, 1917), quando apresenta e discute as 
implicações cosmológicas da TRG. Nasce, assim, a 
Cosmologia como uma nova área da Física. Vê-se, me-
diante estes fatos, estar-se diante de uma grande teoria 
científica, que incorpora teorias e modelos anteriores, 
introduz uma nova formulação matemática na Física (a 
Geometria Riemanniana) e faz previsões que aguardam 
até um século para serem comprovadas.

Neste ano de 2019, a Física comemora os cem anos 
do célebre experimento realizado em Sobral e que se 
constituiu no primeiro grande teste experimental da 
TRG. Com este propósito, participamos desta comemo-
ração contribuindo para a publicação deste volume com 
uma discussão que foi plenamente ampliada pela Rela-
tividade Geral e que repercute fortemente até os nossos 
dias: a introdução de dimensões espaciais e temporais 
suplementares às quatro dimensões espaço-temporais 
que percebemos. A possibilidade de unificação das in-
terações eletromagnética e gravitacional, as duas úni-
cas estabelecidas antes dos anos 1920, foi o ponto de 
partida para a adoção de dimensões extras na Física. E 
este é o caminho que escolhemos percorrer com a nossa 
contribuição a esta publicação.

É importante deixar claro que o nosso objetivo é 
traçar uma trajetória descritiva e cronológica da 
introdução de dimensões suplementares na formulação 
de teorias e modelos para as interações fundamentais. 
Ressaltamos que não será uma revisão dos aspectos 
técnicos. Optamos por mostrar como os fatos 
relacionados às dimensões extras foram sendo 
incorporados com o avanço da Teoria Quântica de 
Campos, a partir dos anos 1950, em conexão com a 
Física de Partículas e com aspectos ligados ao programa 
de unificação das interações fundamentais.
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Como método de trabalho, estaremos colocando em 
destaque as propostas que foram sendo feitas e ci-
tando os trabalhos seminais onde as ideias foram 
lançadas.

A Física de Interações Fundamentais vem experi-
mentando um sempre reavivado interesse pelo estudo 
de teorias de campos definidas em espaços-tempo com 
dimensões mais altas do que quatro. O nosso ponto de 
vista é que estes modelos com mais dimensões sejam 
encarados como teorias efetivas no regime de baixas 
energias de alguma teoria genuinamente mais funda-
mental como, por exemplo, as Supercordas, e se pro-
põem a investigar diferentes mecanismos que possam 
resolver problemas nada triviais do Modelo-Padrão das 
Partículas Elementares. Entretanto, já há quase um sé-
culo, a proposta de teorias físicas em dimensionalida-
des acima de quatro já motivava a área, sobretudo com
o propósito maior de buscar um possível cenário unifi-
cado para as interações gravitacional e eletromagnética.
Deve-se chamar atenção para o fato de que uma questão
comum a todos os modelos desenvolvidos em dimen-
sões mais altas é a necessidade de se justificar por que
as dimensões extra se desacoplam das quatro dimensões
espaço-temporais que experimentamos.

O ponto de vista mais tradicionalmente adotado é se 
supor que estas dimensões suplementares sejam com-
pactas, com uma escalas de comprimento tão peque-
nas que não sejam acessíveis nos níveis de energia dos 
presentes aceleradores, não podendo, portanto, ser di-
retamente detectáveis. (Entretanto, a partir de 1999 -
com os trabalhos seminais de Randall e Sundrum - este 
ponto de vista, mais universalmente seguido, pode ser 
evitado, considerando-se as chamadas “warped geome-
tries”com gravitação localizada. Nesta proposta as di-
mensões extras não precisam ser compactas e estarem 
em escala Planckeana, podendo ser de dimensões aces-
síveis ou até mesmo não-compactas. Faremos referên-
cia posteriormente a esta nova abordagem ao problema 
das dimensões extra.)

Iniciemos, contudo, a nossa apresentação, retor-
nando às origens da proposta de mais dimensões, em 
1914, Nordström (NORDSTRÖM, 1914), tendo como 
objetivo elaborar um cenário unificado para o eletro-
magnetismo e um campo gravitacional escalar, intro-
duz a ideia de uma quinta dimensão. Este trabalho deve 
ser considerado como o marco inicial da proposta de 
dimensões extras em Física. Nesta linha, Kaluza ado-
tou, em 1921, a ideia de Nordström de uma dimensão 
espacial suplementar (KALUZA, 1921), tendo também 
em vista a proposta de unificar a gravitação (agora, na 
formulação Einsteiniana, portanto, com um campo gra-
vitacional tensorial, não mais escalar) e o eletromagne-

tismo. Unificação, neste contexto, significa que, ape-
sar de todas as suas diferenças, estas duas interações
podem ser compreendidas como tendo uma origem em
comum. Desde então, a proposta de se entender geo-
metricamente os números quânticos internos (como a
carga elétrica, por exemplo) ganhou adesão na comu-
nidade das interações fundamentais. Da mesma forma
que energia e momento são descritos em conexão com
as translações espaço-temporais, o que se propunha era
compreender os números quânticos internos e as inte-
rações a estes associadas através de simetrias ligadas a
dimensões extra.

Em 1926, independentemente, três autores − Klein
(KLEIN, 1926), Mandel (MANDEL, 1926) e Fock
(FOCK, 1926) − retomam a iniciativa de Nordström e
Kaluza, propondo que a interação eletromagnética dei-
xasse de ter o status de uma interação especial e pas-
sasse a ser vista simplesmente como uma componente
da interação gravitacional, com o sistema gravitacio-
nal, porém, em uma dimensão extra. Em 1938, Klein
(KLEIN, 1938) apresenta, na épica Conferência New

Theories in Physics, realizada em Varsóvia, o seu no-
tável seminário On the theory of charged fields ˘ que
seria a primeira versão do que chamamos atualmente
The Theory of Everything ˘ no qual notavelmente uni-
ficava todas as partículas conhecidas desde o elétron
até então (incluindo aí os hipotéticos mésons−π previs-
tos por Yukawa em 1935) em uma descrição unificada
das interações gravitacional, eletromagnética e nuclea-
res (forte e fraca) em um espaço-tempo 5−dimensional
(YUKAWA, 1935).

No mesmo ano de 1938, Bergmann e Einstein
(BARGMANN; EINSTEIN, 1938) introduzem um ele-
mento novo a partir da proposta de Kaluza e Klein:
compreender a quantização da carga elétrica de uma
forma diferente do que Paul Dirac havia proposto em
seu trabalho de 1931 (DIRAC, 1931). Bergmann e
Einstein associam a simetria U(1) do eletromagnetismo
à ideia de uma quinta dimensão compacta e esta propri-
edade e a compaticidade da quinta dimensão justifica
a simetria eletromagnética U(1) bem como a natureza
quantizada da carga elétrica. A geometrização da carga
em associação com uma quinta dimensão compacta ga-
rante a quantização da carga elétrica.

Após a considerável interrupção, devido à II Grande
Guerra, no fluxo das ideias que avançavam no riquís-
simo período 1925-1938, a área das interações funda-
mentais em associação com a teoria quântica de cam-
pos é retomada no pós-guerra, mas com direciona-
mento para questões das propriedades físicas e as in-
terações entre as chamadas partículas elementares. Os
mésons−π de Yukawa são descobertos em 1947, a com-
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preensão da Eletrodinâmica Quântica avança com inte-
resse renovado e a Física Hadrônica, com o desenvol-
vimento dos aceleradores de partículas, passa a ser do-
minante na área das Interações Fundamentais. Neste 
cenário, as ideias de Kaluza-Klein deixam de ter o pro-
tagonismo que haviam conquistado na década de 1930.

Apesar do hiato que se preanunciava para as cha-
madas Teorias de Kaluza-Klein, é importante destacar 
que a ideia de se geometrizar as interações (agora, na 
década de 1950, é a vez das interações nucleares) não 
está completamente esquecida. Shaw e Salam (SHAW, 
1954) e, contemporaneamente, Yang-Mills concebem, 
em 1954, as chamadas Teorias de Yang-Mills-Shaw , 
que se propõem a descrever, com uma abordagem mais 
geometrizada, a interação nuclear forte entre prótons e 
nêutrons, não mais mediada pela troca de bósons esca-

lares (os mésons−π de Yukawa), mas, agora, em maior 
proximidade ao paradigma eletromagnético: a troca de 
bósons vetoriais (YANG; MILLS, 1954). Na formula-

ção de Yang-Mills-Shaw os próprios mésons−π inte-
ragem nuclearmente trocando também esta nova cate-
goria de mediadores. Em 1956, Utyiama (UTYIAMA, 
1956) publica um importante trabalho, no qual sublinha 
de forma mais contundente a similaridade da formula-
ção de Yang-Mills-Shaw com a descrição geométrica 
da gravidade em que se baseia a Teoria da Relatividade 
Geral. Kibble (1961), aprofunda e esclarece melhor o 
trabalho de Utyiama e reescreve a gravitação como uma 
teoria de Yang-Mills-Shaw elegendo a simetria de Lo-
rentz da Relatividade Especial como grupo de gauge da 
formulação. Podemos estabelecer este marco como o fi-
nal daquela que se poderia chamar fase-I das Teorias de 
Kaluza-Klein. Mesmo sem introduzir as dimensões ex-
tra, as Teorias de Yang-Mills-Shaw seguem a proposta 
de Kaluza-Klein de se geometrizar interações associa-
das a números quânticos internos, como carga elétrica e 
spin isotópico. A área entra em silêncio de novo, mas, 
desta vez, somente até 1976. É oportuno, a este ponto, 
ressaltar que, dentro do cenário de Kaluza-Klein, uma 
teoria de Yang-Mills pode emergir da formu-lação de um 
modelo de gravidade em mais altas dimensões através 
do chamado mecanismo de compactificação 
espontânea. Um trabalho claro e bastante pedagógico 
para a elucidação deste ponto é o artigo (SALAM, 
STRATHDEE, 1982), cujos apêndices são muito 
didáticos e mostram de forma muito clara como 
campos de Yang-Mills podem emergir de estruturas 
geométricas de espaços-tempo curvos.

O período 1962-1976 é efervescente em outras dire-
ções: muitas novas ideias, outros paradigmas, avanços 
na compreensão da implementação de simetrias, gran-
des previsões teóricas, descobertas que consagram estas

previsões, completa-se a Teoria Eletrofraca de Salam-
Glashow-Weinberg em 1967; entra em cena a liberdade
assintótica com os experimentos do SLAC em 1968-
1969 e Gross-Wilczek e Politzer, independentemente,
demonstram, em 1973, no âmbito de uma Teoria de
Yang-Mills-Shaw com grupo de gauge SU(3), a pro-
priedade de liberdade assintótica dos quarks. Neste
contexto, as interações eletrofracas e nucleares fortes
atingem o status teórico de teorias quânticas de cam-
pos consistentes e aptas a descrever a fenomenolo-
gia do mundo das partículas genuinamente elementares
(quarks, léptons carregados, neutrinos e bósons vetori-
ais intermediários). Temos, então, formulado o Modelo
Padrão da Física de Partículas Elementares.

Deve-se, aqui, chamar atenção para o relevante tra-
balho de Dirac (1963), onde o autor estuda o grupo de
anti-de Sitter, SO(2, 3), e obtém a peculiar representa-
ção dos singletons, que são restritas ao espaço de anti-
de Sitter e não aparecem como representações do grupo
de Poincaré, mesmo no limite de constante cosmológica
nula. Ainda que sendo realizado em (1+3) dimensões,
i.e., sem a incorporação de uma dimensão extra, este
trabalho merece ser citado por antecipar a ideia da cor-
respondência AdS/CFT , conjecturada por Maldacena
(1998) e reafirmada por Witten (1998), ao discutirem o
espaço de anti-de Sitter 5-dimensional, AdS5.

No novo cenário que se descortina, dois grande
projetos ocupam a comunidade da área das interações
fundamentais: a formulação consistente de uma teo-
ria quântica da gravitação e a busca de um formalismo
unificado que demonstre que todas as quatro interações
(eletromagnética, nuclear fraca, nuclear forte e gravita-
ção) têm uma origem em comum. A gravitação, de um
ponto de vista mais microscópico, catalisa um grande
número de esforços e isto contribui para o que ocor-
rerá alguns anos à frente, mais exatamente, em 1978,
o renascimento das Teorias de Kaluza-Klein. A ponte
que se estabelece para este ressurgimento é a introdução
da Supersimetria (1973) e da Supergravidade (1976) na
área das teorias para as interações fundamentais.

É justamente o aparecimento das teorias de super-
gravidade que restaura o interesse e estimula a busca
de novos caminhos para as Teorias de Kaluza-Klein e
os métodos de redução dimensional. Em 1975, Scherk
e Schwarz (SCHERK; SCHWARZ, 1975) retomam os
cenários multidimensionais e propõem um método de
redução dimensional apropriado para estudar o espectro
de campos em modelos reduzidos dimensionalmente a
partir de modelos definidos inicialmente em dimensões
mais altas. A redução dimensional é trivial: consiste
em se considerar apenas as configurações de campos
que não dependem das coordenadas espaço-temporais
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extras; considera-se que os campos dependam apenas
das coordenadas espaço-temporais do espaço de Min-
kowski em 4D. Esta prescrição funciona para o estudo
do chamado setor de modos-zero (campos de massa
nula) e é útil também para se chegar às simetrias inter-
nas do modelo reduzido. Entretanto, a ideia é imposta
por decreto, e não segue naturalmente da dinâmica do
sistema de campos

Buscando uma prescrição com mais fundamentação
dinâmica, Cremmer e Scherk desenvolvem, em 1976,
um novo mecanismo de redução dimensional, um passo
adiante da proposta de Kaluza-Klein: a chamada re-
dução dimensional por compactificação espontânea, na
qual a dinâmica que se dá em dimensões mais altas in-
dica, através das soluções das equações de campo, que
a geometria pode ser fatorada em um espaço-tempo de
(1+3) dimensões e um espaço interno N−dimensional,
cujas isometrias se associam às simetrias de gauge
do mundo quadridimensional (CREMMER; SCHERK,
1976). A compactificação espontânea abre uma nova
era de efervescentes atividades na busca pela unifica-
ção e encontra uma forte base teórica na supersimetria;
esta provê, através de seus supermultipletes, os campos
de matéria necessários para a indução da compactifica-
ção espontânea. Sem supersimetria, a introdução destes
campos torna-se um processo ad-hoc. Em um cenário
de supersimetria estendida, a matéria é naturalmente in-
troduzida nos supermultipletes de gauge ou nos super-
multipletes de gravitação.

Em seguida à contribuição de Cremmer-Scherk, o
período 1976-1978 foi marcado pela publicação de vá-
rios trabalhos onde se apresentavam diferentes mode-
los à la Kaluza-Klein baseados no fenômeno da com-
pactificação espontânea, sempre com vistas ao projeto
de unificação de todos os campos de força. Em 1978,
Nahm mostra que 11 é o número máximo de dimensões
permitidas pela supersimetria (NAHM, 1978) e, em
1979, Scherk e Schwarz estudam a geração de massa
e um mecanismo de quebra espontânea da supersime-
tria por redução dimensional na formulação de com-
pactificação espontânea da supergravidade (SCHERK;
SCHWARZ, 1979), abordagem que se difundiu sob a
terminologia de Supergravidades de Kaluza-Klein. Es-
tas foram de central importância e dominaram a litera-
tura referente à unificação e à investigação da gravita-
ção quântica até 1987.

Em 1980, destaca-se o trabalho de Freund-Rubin
(FREUND; RUBIN, 1980), que aplica o mecanismo
da compactificação espontânea à supergravidade maxi-
malmente estendida (11-dimensional): chega-se a um
espaço-tempo quadridimensional com constante cos-
mológica negativa, isto é, um espaço-tempo de anti-de

Sitter (AdS). Este trabalho é a base para a compreen-
são da relação entre supersimetria e espaços da catego-
ria AdS. Cabe ressaltar também que, em 1980, Orzalesi 
publica um importante trabalho de revisão crítica sobre 
a unificação do ponto de vista das Teorias de Kaluza-
Klein (ORZALESI, 1980).

Em 1981, Witten publica um trabalho indicando que 
11 dimensões, além de ser o espaço-tempo mais amplo 
possível para acomodar a supersimetria, é também o nú-
mero mínimo de dimensões para acomodar um grupo 
de isometria SU(3) × SU(2) × U(1), que nada mais é 
do que o grupo de gauge do Modelo Padrão (WITTEN, 
1981). A este ponto, ainda que rompendo com a or-
dem cronológica dos fatos, cabe destacar que, a par-tir 
desta proposta de física em 11 dimensões, Witten 
propõe, em 1995, uma formulação mais completa, a 
chamada Teoria-M (WITTEN,1995), a partir da qual 
as diferentes teorias de supercordas (sobre es-tas, 
falaremos mais à frente) podem ser obtidas. A 
introdução da Teoria-M marca o período que se cha-mou 
a Segunda Revolução das Cordas. Logo em se-guida, 
como um desdobramento, Vafa introduz, em 1996, a 
Teoria-F, esta formulada em 12 dimensões 
(VAFA,1996; WEIGAND, 2018).

Recebeu notável atenção o trabalho de Percacci e 
Randjbar-Daemi, onde os autores mostram que o meca-
nismo de compactificação espontânea, associado à pre-
sença de campos de Yang-Mills já introduzidos em altas 
dimensões, pode eliminar a constante cosmológica do 
mundo em (1+3) dimensões e ter como solução o pro-
duto cartesiano entre um espaço-tempo plano quadridi-
mensional (Minkowsiki), no lugar de um espaço AdS, e 
um espaço compacto N-dimensional, como pressu-põe 
o mecanismo (PERCACCI; RANDJBAR-DAEMI,
1982).

Em 1980, uma novidade no que diz respeito às Te-
orias de Kaluza-Klein: um método de redução dimen-
sional alternativo e radicalmente diferente dos esque-
mas de Scherk-Schwarz e do fenômeno de compactifi-
cação espontânea: a chamada redução dimensional por 
transformação de Legendre, desenvolvido por Sohnius, 
Stelle e West (SOHNIUS; STELLER; WEST, 1980). 
Este processo não omite dependência nas coordenadas 
espaciais extras, também não as compactifica e não se 
baseia em uma solução clássica para os campos que de-
finem o modelo em dimensões mais altas. O esquema 
de Sohnius-Stelle-West é uma proposta realmente nova 
e se mostra muito conveniente para a obtenção de mo-
delos supersimétricos estendidos com supersimetria re-
alizada off-shell, que é uma questão não trivial (veja, 
por exemplo, PATRICK, 2006 ).

Um significativo avanço no estuda das dimensões
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extras é feito em Maio de 1984, em um notável tra-
balho de Sakharov: as dimensões suplementares são, 
agora, do tipo-tempo, novos eixos temporais. O traba-
lho Cosmological transitions with a change in the me-

tric signature (SAKHAROV, 1984) levanta a hipótese 
de que novas coordenadas temporais podem ser gera-
das por meio de transições quânticas que induzem uma 
alteração na assinatura (no trabalho de Sakharov, defi-
nida como o número de dimensões temporais) da mé-
trica espaço-tempo. A teoria de gravidade que o autor 
propõe com esta nova propriedade é uma teoria da tipo 
Kaluza-Klein com a propriedade especial de ser confor-
malmente invariante. Logo após o lançamento desta hi-
pótese, Aref‘eva e Volovich, a reforçam publicando um 
consequente trabalho na linha das teorias de Kaluza-
Klein em dimensões mais altas onde, agora, são estu-
dadas as consequências de natureza física e os aspec-
tos matemáticos dos espaços-tempo onde há dimensões 
temporais compactificadas (AREF‘EVA; VOLOVICH, 
1985).

É instrutivo destacar, a este ponto, que a discus-
são de modelos físicos com duas ou mais dimensões 
tipo-tempo ressurge, em bases muito diferentes daque-
las estabelecidas por Sakharov e seus colaboradores, 
alguns anos depois, já na década de 1990, em cone-
xão com a Supersimetria e a Supergravidade formula-
das nos chamados espaços de Atiyah-Ward (linha for-
temente trabalhada por Jim Gates e colaboradores (KE-
TOV; NISHINO, GATES, 1993) e também problema 
da compactificação das Teorias de Supercordas (este úl-
timo desenvolvimento já em final dos anos 1990 e início 
dos anos 2000). Para se ter uma ideia sistematizada e 
global de modelos físicos com tempos suplementares, 
deixamos como referência o trabalho de Foster e Mül-
ler (FOSTER, MÜLLER, 2010), Physics with two time 
dimensions. A literatura citada por este trabalho cobre 
os desenvolvimentos mais importantes feitos na linha 
dos dimensões temporais extras.

Uma outra contribuição que deve ser destacada é o 
trabalho de Dolan e Duff, em 1984, onde os autores 
mostram, pela primeira vez, a conexão entre a receita 
de Kaluza-Klein e o aparecimento de álgebras de di-
mensão infinita, do tipo Kac-Moody, ao analisarem as 
simetrias dos modelos reduzidos em 4 dimensões in-
cluindo os estados massivos juntamente aos tradicio-
nais modos-zero (DOLAN; DUFF, 1984). Foi um ou-
tro importante passo nos anos das Supergravidades e 
Cosmologias de Kaluza-Klein. Com respeito a este 
autor, cabe a este ponto citar o seu excelente texto 
sobre o mundo 11-dimensional, no qual, entre vá-rios 
aspectos que aborda, discute a conexão entre 
modelos de membranas em 11 dimensões e Mecâni-

-ca Quântica Supersimétrica, o que possibilita ter
informações sobre a Teoria-M a partir de modelos
mecânicos, isto é, a partir de uma formulação para
0-branas (DUFF,2001).

Os quase dez anos de avanços nesta frente de tra-
balhos, que constituem a fase-II das Teorias de Kaluza-
Klein, estão sumarizados e descritos, de forma muito 
didática, em um artigo de revisão assinado por Duff, 
Nilsson e Pope (1986) e em um livro publicado por Ap-
pelquist, Chodos e Freund (1987). Segue-se, a partir 
da fase-II, a era das compactificações, dos espaços de 
Calabi-Yau, dos orbifolds e da busca por configurações 
de vácuo das teorias de supercordas, o que se inaugura 
com o célebre trabalho Vacuum Configurations for Su-

perstrings, de Candelas, Horowitz, Strominger e Wit-
ten (CANDELAS et al., 1985), no qual são discutidas 
também várias questões de interesse para uma fenome-
nologia possível além do Modelo-Padrão, baseada em 
supersimetria. Os anos de 1984 e 1985 assinalam a 
chamada Primeira Revolução das Cordas, quando, em 
um trabalho altamente consequente, Green e Schwarz 
(GREEN,SCHWARZ,1984,1985) mostram que uma 
teoria de Yang-Mills supersimétrica acoplada a um 
modelo de supergravidade simples em 10 dimensões é 
livre de anomalias de gauge e anoma-lias gravitacionais 
para os grupos de gauge especiais SO(32) e E8 x E8. 
Este trabalho abriu, no Outono de 1984, a era das 
supercordas. A partir daí, como já anteriormente 
mencionado, dimensões mais altas, especificamente, 11 
e 12 foram adotadas para a for-mulação das teorias-M e 
–F, respectivamente.

A literatura das Teorias de Kaluza-Klein é mais mar-
cadamente dominada pelo estudo de aspectos geométri-
cos e clássicos. O passo essencial é escrever um modelo
clássico com as simetrias desejadas e que realize algum
esquema de unificação que se esteja procurando. Mas,
cumprida esta primeira etapa, é de fundamental relevân-

cia se compreender como os resultados clássicos − a es-
tabilidade do estado de vácuo, o espectro de massas e as

relações entre as constantes de acoplamento − reagem
frente à inclusão dos efeitos quânticos. E, a este ponto
abrem-se duas frentes de ataque ao problema: decidir se
a quantização será realizada nas dimensões superiores,
visando a posterior conexão com a arena quadridimen-
sional, ou se será investigada após algum esquema de
redução dimensional ter ocorrido, considerando-se, en-
tão, todos os campos e interações do modelo nas qua-
tro dimensões. A escolha de um ou de outro procedi-
mento pode ser irrelevante do ponto de vista puramente
clássico, mas, com o processo de quantização, o proce-
dimento pode não ser comutativo: quantizar-e-reduzir

pode levar a resultados distintos de reduzir-e-quantizar.
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Na direção de se considerar efeitos quânticos em Te-
orias de Kaluza-Klein, chamamos atenção para os arti-
gos de Appelquist e Chodos (1983), onde os autores
computam o potencial efetivo a 1-loop em termos da
componente extra da métrica em 5 dimensões; os au-
tores consideram o modelo 5-dimensional de Kaluza-
Klein para unificar gravitação e eletromagnetismo e ob-
têm o resultado a 1-loop em cinco dimensões. A partir
deste resultado, mostram que a dimensão extra tende
a se contrair a um tamanho na escala do comprimento
de Planck. Estes dois trabalhos, na verdade, descrevem
a contrapartida gravitacional do Efeito Casimir da Ele-
trodinâmica. Podemos dizer que Appelquist e Chodos
iniciam a fase da quantização das Teorias de Kaluza-
Klein. Ainda em 1983, Appelquist, Chodos e Myers
mostram como efeitos quânticos podem gerar instabi-
lidades no processo de redução dimensional (ALPPE-
QUIST; CHODOS; MYERS, 1983).

Em seguida, Chodos (1984a) apresenta um traba-
lho mais genérico, onde tece várias considerações so-
bre as Teorias de Kaluza-Klein e, em particular, faz
algumas digressões sobre os aspectos quânticos des-
tas teorias (CHODOS, 1984b). Ainda em 1984, Can-
delas e Weinberg propõem a chamada redução dimen-
sional auto-consistente e partem de (4+N) dimensões,
onde consideram um sistema de gravitação acoplada a
campos de matéria que não auto-interagem e cujo ten-
sor energia-momento corrigido à ordem de 1-loop é o
responsável pela curvatura da variedade compacta N-
dimensional que emerge das N dimensões extras (CAN-
DELAS; WEINBERG, 1984). Neste esquema, os auto-
res também apresentam um procedimento para se cal-
cular cargas e constantes de acoplamento de gauge do
modelo reduzido 4-dimensional. Posteriormente, Del-
bourgo e Weber (1986) também estudam efeitos das
correções quânticas diretamente em 5 dimensões (DEL-
BOURGO; WEBER, 1986). Derivam os propagadores
do gráviton e do fóton e o efeito dos modos massivos
de spin-2 no espaço-tempo 5-dimensional, baseando-
se fortemente na proposta de Appelquist e Chodos para
tratar a questão.

Cabe destacar também o trabalho de Huggins
e Toms (1985), onde computam, no modelo 5-
dimensional, uma ação efetiva a 1-loop para discutir a
componente Maxwelliana desta ação efetiva induzida
como efeito das correções de 1-loop. De um ponto
de vista sincrônico, foi uma contribuição de significado
para a época.

Retomando de forma mais enfática o que colocamos
acima, a tarefa de executar a quantização e computar
correções quânticas no âmbito das Teorias de Kaluza-
Klein coloca-nos frente à duas possibilidades: realiza-

se o programa no espaço-tempo completo com dimen-
são D > 4 e, em seguida, reduz-se o modelo com os
efeitos quânticos já computados nas dimensões mais al-
tas; ou, alternativamente, procede-se inicialmente à re-
dução e, uma vez que o estado de vácuo, os modos-zero,
as flutuações massivos e todos os acoplamentos tenham
sido determinados em D = 4, passa-se à quantização
e ao cômputo dos efeitos quânticos já no espaço-tempo
reduzido quadridimensional. Trabalhos publicados so-
bre a questão, e que serão citados mais à frente, mos-
tram que pode, de fato, haver uma espécie de inequiva-
lência quântica entre modelos de Kaluza-Klein quando
se adota um ou outro ponto de vista. Estabelece-se,
a partir dos trabalhos de Appelquist e Chodos (1983),
uma rica literatura no tópico das altas dimensões, meca-
nismos de compactificação e efeitos quânticos das altas
dimensionalidades (APPELQUIST; CHODOS, 1983a,
1983b). Optamos aqui por fazer uma varredura do tó-
pico, de 1983 à atualidade, apenas demarcando o apa-
recimento daquelas ideias − e as correspondentes refe-
rências seminais − que vieram a definir novas direções
na discussão dos efeitos quânticos inerentes às teorias
de campos definidas em dimensionalidades mais altas.

A década de 1990 avança ainda com grande inte-
resse na influência, via efeitos quânticos, das dimen-
sões extras e sua compactificação no mecanismo da
quebra eletrofraca e em processos que realizavam testes
de precisão da Teoria Eletrofraca. Importante relembrar
que, no período 1989-2000, o acelerador LEP do CERN
encontrava-se no pleno de suas operações, e a era dos
testes de precisão do setor eletrofraco constituía-se em
uma grande questão deste período. Daí, o grande estí-
mulo de se tentar detectar indiretamente as dimensões
extras através de seus efeitos quânticos.

Já na reta final da década de 1990, Arkani-Hamed,
Dimopoulos e Dvali quebram a quase monotonia da
área: publicam, em 1998, uma série de artigos em
que relacionam o problema da hierarquia de gauge do
Modelo-Padrão a uma nova escala − sub-milimétrica−
para as dimensões extras, tirando-as da escala de Planck
(ARKANI-HAMED; DIMOPOULOS; DVALI, 1998,
1999, 2002). Na proposta destes autores − que pas-
sou a ser conhecida como Large Extra Dimensions −

as novas dimensões compactas e sub-milimétricas são
responsáveis pelo enfraquecimento da força gravitaci-
onal relativamente à força fraca na escala sub-nuclear.
Este foi um passo muito inovador para a área, que, até
então, sempre preconizou a escala Planckeana para as
dimensões extras. Logo em seguida, em 1999, Ran-
dall e Sundrum introduzem um novo cenários para as
dimensões extras (RANDALL; SUNDRUM, 1999), ao
qual passou-se a ser referido como warped dimensi-
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ons: o que estes autores propõem é que os testes liga-
dos à força gravitacional não impedem que sejam con-
sideradas não-compactas (no modelo 5-dimensional a 
quinta dimensão pode ser infinita) as dimensões extra 
ao nosso Universo quadridimensional; este ponto de 
vista é realmente um corte no pensamento da área. E 
toda a ideia está baseada na existência de uma geome-
tria não-fatorada, na qual a métrica do espaço-tempo 
quadridimensional passa a depender das dimensões ex-
tras. Quebra-se, então, neste cenário, a premissa de que 
a geometria do espaço-tempo completo seja fatorável, 
podendo, agora, termos a presença das coordenadas es-
paciais extras na própria métrica do espaço-tempo qua-
dridimensional.

Inicia-se, com Randall e Sundrum, a fase das cha-
madas warped geometries e cenários de brane-world, 
com muitas aplicações ao estudo de efeitos quânticos 
nos processos envolvendo as partículas do Modelo-
Padrão e às consequências dos brane-worlds na for-
mulação de modelos cosmológicos. Na concepção das 
warped geometries, nosso Universo é um espaço de 
anti-de Sitter 5-dimensional, no qual todas as partícu-
las do Modelo-Padrão estão localizadas em uma brana 
quadridimensional, enquanto os grávitons propagam-
se e têm a sua dinâmica no interior do mundo 5-
dimensional. A partir daí o modelo de Randall-
Sundrum se consolidou e vem sendo regularmente dis-
cutido na literatura da área. Em conexão com os 
modelos de Randall-Sundrum, é oportuno chamar 
atenção para um outro tipo de compactificação: a 
compactificação com fluxos em teorias de cordas 
(GRAÑA,2006), onde além da métrica, o espaço de 
dimensões extras também exibe um fluxo constante, 
associado a um campo magnético. E este tipo de 
compactificação dá suporte aos modelos do tipo-
Randall-Sundrum.

Na linha dos efeitos quânticos em teorias de cam-
pos em mais altas dimensões, poderíamos citar, em se-
guida à ampla aceitação das warped geometries, os tra-
balhos de Álvarez e Faedo, que também demarcam uma 
fronteira no tópico das correções quânticas (ÁLVAREZ; 
FAEDO, 2006, 2007). Nestes trabalhos, os autores ata-
cam frontalmente a questão de comparar os procedi-
mentos de quantização e cômputo de correções a 1-loop 
no espaço-tempo completo e no espaço-tempo reduzido 
com a inclusão das torres de campos massivos. Colo-
cam em evidência as condições sob as quais as duas 
metodologias podem ou não ser equivalentes. Nos ca-
sos em que a inequivalência quântica fica comprovada, 
faz-se importante rever uma série de trabalhos da lite-
ratura onde se tratou a questão como se a equivalência 
fosse natural, como ocorre a nível clássico. Estes traba-

lhos merecem a devida atenção se o foco é a discussão 
sobre como computar correções quânticas para modelos 
com mais dimensões.

Mais recentemente, podemos citar a linha de tra-
balhos iniciada por Bauman e Dienes e, em especial, 
no artigo de 2012 (BAUMAN; DIENES, 2012), onde 
aplicam um método de regularização que propuseram 
em 2008 (BAUMAN; DIENES, 2008a, 2008b) para o 
cálculo de efeitos radiativos em teorias com dimensões 
compactas. No trabalho de 2012, computam e demons-
tram explicitamente como as correções a 1-loop, cal-
culadas no setor de modos massivos de Kaluza-Klein, 
alteram as relações entre massas e constantes de aco-
plamento. O trabalho tem consequências para o estudo 
de processos em Física além do Modelo-Padrão.

Há que se ressaltar a introdução de uma dimensão 
extra em uma questão bastante atual da Física de Ma-
téria Condensada: o comportamento de uma nova cate-
goria de materiais, denominados supercondutores topo-
lógicos, ainda em fase de síntese em laboratório. Para 
descrever a dinâmica dos elétrons e fótons neste mate-
rial em nossas 3 dimensões espaciais, o interessante tra-
balho de Qi-Witten-Zhang (2013) introduz uma quarta 
dimensão espacial e formula um modelo eletrodinâmico 
em (1+4) dimensões e adicionam à ação Maxwelliana
o termo topológico de Chern-Simons, que, no mundo
(1+3)-dimensional, induz naturalmente o termo tipo-
axiônico, fundamental para a compreensão de proprie-
dades dos supercondutores topológicos. Consideramos
interessante citar este trabalho, pois abre um novo hori-
zonte de dimensões extras em sistemas de Matéria Con-
densada.

Além destas questões mais recentes, gostaríamos de 
citar nossa proposta original de realizar a conexão entre 
um estudo semi-clássico (cálculo de potenciais inter-
partícula) realizado em dimensões superiores e a sua 
redução ao mundo quadridimensional. O esquema em 
questão, denominado de restrição dimensional 
(OSPEDAL, HELAYËL-NETO 2018) consiste no 
cálculo de potenciais inter-partícula em (D+N), com D 
sendo a dimensão do espaço-tempo de base e N o 
número de dimensões espaciais suplementares. O 
procedimento está baseado na premissa de que a 
interação entre as partículas no mundo 
quadridimensional não transfere momento nas N di-
mensões extras, ou seja, a interação fica restrita ao 
espaço-tempo D-dimensional. Neste cenário, as in-
terações monopolo-monopolo permanecem inalteradas 
e aparecem correções no setor de spin. Isso se deve ao 
fato de que o conceito de spin é sensível a 
dimensionalidade. Por exemplo, no caso da 
interação eletromagnética, descrita pela lagrageana de
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Maxwell (com D=4 e N=1), obtêm-se com a restrição
o conhecido potencial de Coulomb e novas correções
no setor de quadrupolo.

Na linha de introdução de uma quinta dimensão 
não-compacta tipo-tempo com o propósito de se ob-
ter resultados físicos nas quatro dimensões espaço-
temporais que experimentamos, citamos uma série 
de trabalhos publicados por Horwitz e colaboradores 
(LAND; HORWITZ, 2013), à qual se refere a litera-
tura como Off-shell Quantum Electrodynamics. É uma 
abordagem interessante, tendo como consequência pe-
quenos efeitos de correção para processos eletrodinâmi-
cos usualmente calculados no âmbito da QED.

Até aqui, havíamos comentado dimensões 10, 11 e 
12 como as mais altas aparecendo na literatura. 
Entretanto, antes de concluirmos a nossa exposição, 
chamamos atenção para a linha de trabalho intitulada 
Double Field Theory, introduzida por Barton 
Zwiebach. Na qual o número de dimensões espaço-
temporais é duplicado, de tal forma a tornar manifesta 
a chamada simetria-T. Assim, a teoria de cordas em 10 
dimensões é formulada como uma teoria de campos 
em 20 dimensões com a dualidade-T explícita. Para 
uma introdução a esta interessante geometria, citamos 
estas notas de aulas de um curso do próprio autor 
(ZWIEBACH,2011) e o artigo de revisão 
(ALDAZABAL,MARQUES,NÚÑEZ,2013).

Finalizando, esperamos ter oferecido ao leitor inte-
ressado nas teorias à la Kaluza-Klein e na física que se 
pode extrair de dimensões espaço-temporais suplemen-
tares um panorama com seu desenvolvimento na linha 
do tempo e elencando as referências fundamentais asso-
ciadas aos passos que foram dados para se estabelecer 
a ampla literatura na área das dimensões extras, assunto 
que permanece no fronte de interesses da Física de fron-
teira na área das Interações Fundamentais e Altas Ener-
gias.

Como fechamento, colocamos em destaque o fato 
de que a introdução de dimensões extras na Física de 
Interações Fundamentais vem possibilitando um 
notável progresso em dois programas de grande re-
levância na contemporaneidade: a quantização da 
gravidade e a unificação dos campos de força da Na-
tureza, para os quais os mecanismos de redução e 
compactificação dimensional são de máxima impor-
tância. Esta foi a grande motivação que nos levou a 
contribuir com este texto neste volume de comemo-
ração do Centenário do grande evento de Sobral.
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