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RESUMO

A transferéncia de calor por radiagdo em meio participante, que absorve, emite e espalha radia¢do, ocorre em
muitas aplicagdes de engenharia. A solucdo deste tipo de problema é bastante complexa, pois os resultados
obtidos em qualquer ponto do sistema sao influenciados pelos processos que ocorrem em todo o seu dominio.
Devido as dificuldades matematicas que envolvem a forma integro-diferencial da Equacdo da Transferéncia
Radiativa (ETR) em meio participante, muitos métodos aproximados foram desenvolvidos e aplicados por
diversos autores. No presente trabalho, o método de Galerkin serd utilizado para resolver a equacdo da
transferéncia radiativa em meio semitransparente com espalhamento anisotrépico da radiacdo. A solug¢do do
problema permite obter grandezas importantes para engenharia, como o divergente do fluxo de calor radiativo,
o fluxo liquido de calor radiativo, a radiacdo incidente e a intensidade de radiacdo em qualquer ponto do meio.
Os resultados obtidos serdo comparados com os de outros métodos de solug@o.

PALAVRAS-CHAVE: Método de Galerkin, Meio Participante, Radiagdo Térmica, Radiacdo Incidente.

INTRODUCAO

Quando a radiacdo térmica interage com um meio participante, o seu estudo se torna mais complexo por dois
motivos. O primeiro deles é que num meio participante, a absor¢do, a emissdo e o espalhamento da energia
ocorrem em todas as localizagdes do meio, e inclusive nas fronteiras. Assim, a solu¢do completa da mudanca
de energia requer o conhecimento da temperatura, da intensidade de radia¢do e das propriedades fisicas em
todos os pontos do meio. A emissdo da radiaciio deixa de ser um fendmeno puramente superficial para ser um
fendmeno volumétrico. A segunda dificuldade estd na caracteristica espectral da radiacdo que muda de um
COIpo para outro.

Segundo a teoria de Planck, a radiacdo atravessa o meio na forma de fétons (o féton € a unidade bdasica da
energia radiativa). A emissdo da radiacdo decorre da liberacio de fétons de energia, enquanto que na absor¢do
ocorre a captura dos fétons pela particula. Assim, a energia de uma particula ird diminuir ou aumentar se esta
estiver correspondentemente emitindo ou absorvendo fétons. Por outro lado, quando a radia¢do térmica
interage com uma particula, parte do feixe radiante ¢ afastada da direcdo de propagacdo por espalhamento, o
que pode provocar uma perda ou ganho parcial de energia.

Quando um meio participante (que absorve, emite e espalha a radia¢do térmica) liquido, s6lido ou gasoso é
submetido a altas temperaturas, a radiacdo € tdo ou mais importante que a conducio ou convecgao no processo
interno de transferéncia de calor. Assim, na determinag¢do precisa do campo de temperatura transiente é
indispensdvel o tratamento simultineo dos modos de transferéncia de calor, pois, segundo Ozisik (1973), a
andlise separada pode introduzir erros significativos nos resultados obtidos.
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A determina¢do da influéncia da radiagcdo no processo de transferéncia de calor requer a solu¢iio da Equagdo
da Transferéncia Radiativa, de natureza integro-diferencial, que devido as complexidades fisicas e matematicas
envolvidas, muitos métodos aproximados foram desenvolvidos, dentre os quais se pode destacar: o método Fy
(Siewert et al, 1979), o método dos harmoénicos esféricos (Benassi et al, 1983) e o método das ordenadas
discretas (Fiveland, 1984).

No presente capitulo, o método de Galerkin, que foi usado por Cengel e Ozisik (1984), serd empregado para
resolver a equagdo da transferéncia radiativa, possibilitando a determinag@o de grandezas de interesse pratico
como o divergente do fluxo de calor radiativo, o fluxo liquido de calor radiativo, a radiacdo incidente e a
intensidade de radiagdo em qualquer ponto do meio. Os resultados obtidos sdo apresentados na forma de
gréficos e tabelas onde sdo comparados com outros métodos de solu¢ao encontrados na literatura.

MODELO MATEMATICO DO PROBLEMA FiSICO

Para aplicacdo do Método Galerkin considere inicialmente o problema radiativo em meio plano paralelo
unidimensional, que absorve, emite e espalha anisotropicamente a energia térmica radiante, e estd sujeito a
fontes de radiagdo externa como ilustrado na figura 1. Para o estudo do problema serd admitido que as
propriedades radiativas como refletividade e emissividade sdo consideradas constantes e as superficies de
contorno sio difusas na emissdo e na reflexdo.
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Figura 1: Sistema de coordenadas e geometria do problema.

onde o é o albedo para espalhamento simples, 1L € o cosseno do angulo formado entre o eixo positivo dos x e a
direcdo da intensidade de radiag@o, n € o indice de refragdo do meio, p; (i =0, 1, 2, 3), & (i =1, 2) representam
respectivamente as refletividades e as emissividades das superficies de contorno. As fungdes fi(n) (i = 1, 2)
representam a intensidade da fonte de radiagc@o externa que incidem sobre o corpo e I(x, i) € a intensidade de
radiacdo.

No modelo matemaitico, as equagdes da transferéncia radiativa e condi¢des de contornos na forma
adimensional sdo expressas da seguinte forma:

—a 2 ] ’ 7 ’
m \Ifgt“)+\|!(r,u)=S(r)+%jp(u,u)\lf(r,u)du, q, <t<1,, —1<p<l W
V(T = (1=p) EW +£,0] +2p, [y (-, 4)u'dp’s >0 2)
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V(@0 = (1-p) - () +£,05 +2p, [y (r,w)ndy’, u>0 3)

Com p(u, 1) representando a fun¢do de fase do espalhamento, ®; (i=1, 2) as temperaturas nas superficies de
contornos. O primeiro termo do lado direito da igualdade na equacdo (1), representa a energia radiativa emitida
pelo corpo devido sua prépria temperatura, onde G € a constante de Stefan-Boltzmann.

Na adimensionalizacdo do problema foram utilizados os seguintes grupos e parimetros adimensionais:

2—T4 2—T4
It == (:c — (T (=" ‘:C “F (W) (4.a-b)
o G, (D) _Tx,0 2y (50 i
G"(T)_—4n26Tf OTg=—"" Q, (G:E) e (4.c-e)

r

As equagdes (1-3) sdo resolvidas formalmente em termos das componentes (T, W) € W (T, W) para obter:

. . —(10+1) T 1 , —(1-7') ,
VW =y e [ scw-e e 5)

o
—(10-1), 0 1 , —(7-1), ,
Y E =Y (e ] LSE-e Ade ©)
A radiac@o incidente generalizada na forma adimensional é dada por:
G,(n= ED P,V (Twdp+ (=1 [P, (0w (r,—u)du} ™
0 0

Substituindo as equagdes (5) e (6) em (7), e fazendo-se uso das condicdes de contorno do problema radiativo,
resulta:

1 —(10+1),
G:(T)=%-{(l—p0).[Fl(u)'Pn(u)'e ’ /“du+£l®fJ“(ro+r)+2lelJ“(170+r)+
4 ! —(10—1/
(=1)"2p,K.J, (1, =0 +(-D)'e,0, (1, =0 + (D' 1=p)[EW P, -e  Fdu+ ©
L 1 (1), , , “1 T 1 —(7-1) , ,
[ e F s pard -y [ [ LR gn-e S waran
(]—'r()l‘L 4’)—r()l"L
onde foi definido que J (y) =IP,,(H)'3%(1M e:
. L —21:(% L —ny . .
K, =B {a,(-p)[FGe "pdu+1-p)[Fwe “*pdu+o,B,21,) 0 +E,(2t,)e,0: +
0 0 (9)

7 M 0
[S@)[E, (x,+ ) +,E,(x, ~ )T +0)"a, [G, ()], (3, + )+ T, (7, - r’)]dr'}

-10 m=0 0
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) L —Zty 1 —ZTV . .
K,=p (1—p0)IFl(u)e “udp+(xl(1—p3).[Fz(u)e ‘udu+a,E,(27,)k,0; +E,(27,)€,0, +
() M )
[S@0E,(r, + 1) +E,(r, Ol + oY a, [G,(@)|o], (1, +0)+]T,(x, - r’)]dr’}
-10 m=0 0
Substituindo as equacdes (9) e (10) na equagio (8) chega-se a:
. 1 ' oy . o o
G (1)= 5 a- pO)IE(u) ‘e du+€0,7, (1, +1)+a,a,p €07 (T, +1T)+0,p€e,OT (T, +T)+

® ‘ —ny N 1 —217(%
207, (x, + Do, (1=p)[E@ e “*udu+2pB7,(x,+0)-(1-p)[E@-e ™udu+
0 0

0 1 —(10-T
2089, 5, +0) [ SEIEL (5, +7) + 0B, (5, ~ V)M + (17 (1-p,) [EGP. (e “dp+

—10

M 0
2087, (x, +D0Y 2, [GL@Ol=D"T, (7, + )+ ], (x, - )]+ (-)'e,0, (1, - 1)+

m=0 -10

(_l)n 2sz*Jn (To - T) ° (1 - po)jE (H) ° eizr%udu + (_l)n asz«Jn (To - T)81®f +

(-D"o,0,Be,0, (1, —T)+(=D"2p,BT, (r, —D)x, (1 - p3)J' E (- e_zx%udu +
0 ’

=1"2p,B'1, (%, =) [SE)0 B, (1, + ) + B, (r, — 1) T +

—10

M 0
=D"2p,B7, (%, DY a, [G,@|=D"a], (1, +1)+1, (5, -]+

m=0 -10

1L 0 1 0

1 —(1-7), , , . 1 —(r/—r)u , ,
J] Rw-e (¥, wdvdu + (—1) J ] R % S(r,—u)drdu}
0 -10 0 -0

onde foi definido que:

o, =2p,E,(21)) e a, =2p,E,(27,)

1
I-o,0,

E,(2)=[n"" ¢ /dn ¢ B =

A equacdo (11) pode ser reescrita da seguinte forma:

M0
G, (=Y, m+0). [K,,(11)-G, )

m=0 g

ou 3{G: (m}=0

(10)

(1)

(12-a,b)

(12-c,d)

(13)

(14)

onde 3 caracteriza todas as operagdes matemdticas que aparecem na equagdo (4.34) e os termos K,(T, T°) € Y,(7) sdo

definidos respectivamente por:

1

-|r-1]
K, (n)=a, {%I Lo e @ e Fdurp e+ 0l @, + 040, @ -0
u

0

sz*Jn (To - T) [alEz(T/) + Ez (To - T/)](_l)“}

5)
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-10

0
Y ()= %{2 [ Ko @1)S@)dr +Be, 01, (x, + 1)+ (-, T, (1, - D))+
# P 7(1044/
Be.0lo, (r, + 0+ (D', (5, ~ 0]+ (-p) [P WEWe ~ Fau+
B ! —Zx(y
20,8 [0, (5, + 0+ (1T, (8, - D] -p)[F e udu+ (16)
2B 5, + 0+ D 0t (5, ~ Dl -po) [E.Gve udu+

L -(10-1)
(1" (1-p,)[ P GOE.(w)e Adu}
com o valor de r definido por:

1 ara T <T
={ P (17)

(=D™" para T>T

O problema descrito pelas equagdes (1-3) fica reduzido a solucio da equagdo integral (13) para a funcdo G’ (T), que é

representada em termos de polindmios de Legendre na varidvel dptica, T, conforme Cengel (1984), ou seja:
K

G (1)= chkpk[ij, n=0,1,2,...N e k=0,1,2,...,K (18)
k=0 T,

Onde c, sdo os coeficientes de expansdo a serem determinados. Uma vez conhecidos esses coeficientes, as intensidades de
radiacdo, a radiacdo incidente, fluxo de calor radiativo e o divergente do fluxo de calor radiativo sdo determinados em
qualquer ponto do meio a partir de suas defini¢des formais.

O método de Galerkin aplicado a equagfo (14) com G, (1) dada pela equagio (18) vai resultar:

[b,..fe..}=1d.} (19)

sendo a matriz dos coeficientes by, € 0 vetor coluna d; definidos respectivamente por:

ZT 1 m n+l+ m+n+
mnkl :T_‘ilstin _(Dam {E mnkl +B Tn] mk [( 1) pl +( 1) " +a2p]<(—1)k +(_1) l>]} (20)

0 0
2, =2 jsmK m)P( Jdrdrm POR, +(=D"(1=p IR, +
=10 — O

€O NI+(-D""a, |+¢,05|a, + (D" [BT, + 2p,BT, o, + (=D 1—p0)l Fl(u)eih%udu+ (1)
kol J+e.0:] I [ ](

1 -270
20 BT, 1+ " o K —p ) [ .G *udn
0
Nas equacdes (20) e (21) aparecem os seguintes termos:
0 1
= ] [P.op [
-0 0

1 1+wv)! I » /
Z(Z’C ) vid- )[( 1) J.“ P (H)F (“)du J.LL P (j.L)F (u)e d“:|

—(tQ+1)
JF (we ’ Kdudr

O

(22)
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R, = fj (u)P(
-0 0

—(10-1)
JF (we v Kdudr

O

(23)
. 1 1 1 l1 v+l -
Z(ZT():,VG) V),{(—ij*Pn(sz(u)du—(—l) [P WF, (e %du}
1 10 T 7‘1 1:" ’ ’
mnkl j.[ j Pm (“’)P (“’)re KPk [LJPI[leT’de“’=
0- Ty T,
[(=D™ + (- 1)“‘]2 {IO[H(—1)‘*“*V1§hi(l—2i)!
(21, o4
szv: D)’ (v+k+j)! e (k+V)!
S+ Pk=v—DIA=2i+j+DIS ™ ik —v)!
1 1 | [n/2]
N e LI (I R S RS
1= | [eaop| 2 le " Faue=y UL [y s oc)] 25)
) —400 9 nat _V . (ZTO)V VIG—V)! ivel ivel 0
e - DGE=2)({=3)--(+2-n)
_lupn(u)d“_(i+n+1)(i+n—1)(i+n—3)~--(i+3—n) (26)
1 » ,y [n/2]
S =[we P Gudu=YhE, . ..( @7

Fazendo-se uso dos coeficientes de expansdo cy determinados pela expressdo (19), as componentes da intensidade de
radiacio y'(t, ) e Y (T, p), as componentes do fluxo de calor radiativo Q/ (1) e Q,(7)e a radiagdo incidente sdo

determinadas respectivamente por:

=(10-7), T (-7 N K
v =[1-p)E W +e0; +2p,K ] e 0 4+ijsm').e( %df'mzzancnkan(u)Vk(r,u) (28)
i

0 n=0 k=0

B (10— 1 T/ ,
v (t-w =[1-p,)E ) +e,0 +2p.K, | e hoed jsm e Mdr+
(29)
wZZ( Da,c, —P WV, (W
. 1 L —(roﬂ/ .
Q(m=_1(1-p)[Fe ~ “udu+(e0; +2p K B, (5, +0)+
] (30)
[S@)E,(t=1)dv'+0) Y a,c, W, (T)}
—t0 n=0 k=0
_ 1 l 7“04/ 4
Q=7 (1—93)sz(u)e “ud+ (,03 +2p,K, JE, (7, - 1) +
(31)

jsm )E, (T —1)dv’ +m22( "ac W“k(r)}

n=0 k=0
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X 1 ! ~(10+7) ! ~(0-7)
G“(r)zz{(l—po)jﬁ(p)-e Adu+[£l®f+2le]]E2(TO+1)+(1—p3)JF2(u)-e K du+

le.0! +2p.K,[E,(x, - 1)+ TOS(’C')EI (I1—7 hdt + coz(;kz(;a c.Z. (r)} >
Onde foram definidos que:
W, (1)= j ij (:—]P We  Mdudt
e 35)

. V*/ v (k+v)!
I (="
E ;{( D' @v-DHIC, [To an_M (=D Ik V)] S (T, +’l7):|

Q1 (- 1: k
W, (=[P, (:—]P We  Mdudt'= y ! {(2v—1)nc;fj4(ri]sm __kAvl (ro—r)} (36)

=T 2'vi(k —v)! "M

o <

an(t):j:ﬁP (p)ho (:0]e< it + (-1 JO ( ;je_”_%dr}du
> v{k 1y + (-1 Jv-nuc; 2 ( J . @7
%[(—DRSZN(T +D+(=D"S,, (7, r)]}
e
P.(x)= 3 hx"* Polinomios de Legendre (38)

i=0

(=1’ (2n—2i)! e [n/ ]:{( n/2 para n par (39)

M —)!(n—2i)! _1)/2 para n {mpar
:Hn/ (x) = Polindmio de Gegenbauer
_ 1 (n-m)/2 (—1) F(n + /2 —l) (zx)n_m_Zi (40)
I'm+)%) = i(n—m-2i)!

Os coeficientes a, estdo relacionados a func@o de fase do espalhamento da radiacdo. A determinacdo completa da funcdo de
fase, de acordo com Ozisik (1973) é bastante laboriosa, pois requer que sejam feitos cdlculos para um grande nimero de
angulos de espalhamento. Por isso, Chu e Churchill (1955) expressaram a funcio de fase em termos de polindbmios de
Legendre da seguinte forma:
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P =D aP ), a,=I @1

onde Pj(11) € o polindmio de Legendre de ordem j e argumento L, € a; sdo os coeficientes de expansdo determinados a partir
das equacdes de Mie (para o caso de particulas em forma de esfera), sendo funcio somente do didmetro e do indice de
refrac@o das particulas. Para efeito de comprovacao da eficicia do método empregado neste trabalho, as simulacées serdo
feitas usando as leis de espalhamento dadas na tabela 1 (Lee e Buckius, 1982).

Tabela 1: Coeficiente para expansao da Funcio de Fase.

Funcao de Fase
a.

! F1 F2 F3 Bl B2 B3
a 1.0 1.0 1.0 1.0 1.0 1.0
a, 1.0 15 1.98398 1.0 1.0 20.56524
a 05 1.50823 1.0 0.29783
as 0.70075 20.75 0.08571
a, 0.23489 0.01003
as 0.05133 0.00063
a 0.00760
a, 0.00048

RESULTADOS E DISCUSSOES

As equacdes algébricas resultantes foram resolvidas por meio de cédigo computacional escrito em linguagem
Fortran, utilizando o software FORTRAN POWERSTATION 4.0. Como aplica¢do considerou-se um corpo
plano unidimensional com contornos transparentes, sujeito a uma fonte de radiacdo externa isotrépica de
intensidade unitdria aplicada na superficie de contorno T=-T,, isto é, Fi(n)=1. A radiacdo emitida pelo corpo
devido a sua prépria temperatura € desprezivel quando comparada com F,(u), e a fonte de radiacdo externa,
F,(p) é nula.

Na figura (2) é apresentado o efeito que a espessura Optica exerce na refletdncia de um corpo puramente
difusor (w=1.0) para dois tipos de funcio de fase (B2 e F2). Pode-se perceber além da forte concordancia dos
resultados obtidos que a refletdncia aumenta para valores crescentes de 7.

A Figura (3) mostra a influéncia que a funcdo de fase do espalhamento exerce no fluxo liquido de calor
radiativo para um corpo com superficies de contorno negras, sujeito a uma fonte externa de radiag@o difusa e
intensidade unitdria, aplicada na posi¢do T=-T,. Na simulacdo foram considerados diferentes valores para o
albedo e espessura optica como indicados nas respectivas figuras. Pode-se perceber que os resultados obtidos
apresentam forte concordancia com a solu¢@o exata apresentada por Lee e Buckius (1982).

A Tabela (2) mostra os resultados obtidos para radiag@o incidente na superficie de contorno (T=T,.) para um
corpo conservativo (®=1.0) cinzento, que espalha radiacdo isotropicamente. No estudo €é verificada a
influéncia da espessura Optica do corpo sobre essa grandeza. As propriedades radiativas e as temperaturas de
cada parede estdo especificadas nas proprias tabelas. Os resultados obtidos no presente trabalho sdo
comparados com a solucdo exata de Heaslet e Warming (1965), e com os resultados de Fiveland (1987) que
resolveu o problema pelo método das diferencas finitas associado ao método das ordenadas discretas e os
obtidos por Oliveira (2004) que utilizou o método das ordenadas discretas. Uma andlise dos resultados mostra
que, com poucos termos de expansdo, o método de Galerkin mostra forte concordancia com os outros métodos

apresentados.
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Figura 2: Refletancia versus espessura 6ptica do corpo

Curva No.  Fungdo de Fase [} 21,
1 F1 0.5 0.1
2 B1 0.5 0.1
3 F1 0.5 1.0
4 B1 0.5 1.0
5 F1 0.9 5.0
6 Bl 0.9 5.0

Presente trabalho

Lee e Buckius (1982)-

(RN -
solucdo exata

Fluxo radiativo adimensional

0 |||I|||I|||I|||IIIIIIIIIIIIIIIIIIIIIIII

-0.5 -04 -03 -02 -0.1 0 01 02 03 04 05

Posicdo, 1/21,
Figura 3: Efeito da funcao de fase no fluxo de calor radiativo adimensional.
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0=1.0 6,=1.0 6,=0.0 p,"=0.2
Radiacio incidente G(t,)
G & | T G6Fivelands 3 Su()liveira(l;m Pres. Trabalho | Sol. Exata
0.1 | 1.4440 | 1.4110 | 1.3946 | 1.3963 1.3963 1.3965
1.0 | 1.0 | 0.8660 | 0.8558 | 0.8500 | 0.8499 0.8499 0.8499
3.0 | 05031 | 0.4912 | 0.4860 | 0.4861 0.4861 0.4861
0.1 | 2.5640 | 2.5172 | 2.5068 | 2.5080 2.5080 2.5080
08 1 05| 1.0]| 1.9140 | 1.8832 | 1.8804 | 1.8801 1.8803 1.8801
3.0 | 1.2880 | 1.2668 | 1.2558 | 1.2558 1.2558 1.2558
0.1 | 3.7420 | 3.6628 | 3.6618 | 3.6622 3.6621 3.6622
0.1 1 10| 35212 | 3.4120 | 3.4140 | 3.4138 3.4140 3.4138
3.0 | 3.1520 | 3.0000 | 3.0030 | 3.0029 3.0030 3.0029
CONCLUSOES

Como pode ser observado através dos resultados obtidos, o método de Galerkin, empregado para resolver a
Equacdo da Transferéncia Radiativa, permite determinar de forma rdpida, sistemética e precisa, resultados de
grandezas fisicas de interesse pritico da engenharia, como distribuicdo angular da intensidade de radiacdo,
fluxo liquido de calor radiativo e a radia¢do incidente em qualquer ponto do meio sem que seja preciso alterar
a formulacdo original do problema. Por isso, pode-se concluir que o método de Galerkin é uma alternativa
computacional para resolver a ETR em problemas acoplados condugdo-radiacao.
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