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RESUMO 

A transferência de calor por radiação em meio participante, que absorve, emite e espalha radiação, ocorre em 
muitas aplicações de engenharia. A solução deste tipo de problema é bastante complexa, pois os resultados 
obtidos em qualquer ponto do sistema são influenciados pelos processos que ocorrem em todo o seu domínio. 
Devido às dificuldades matemáticas que envolvem a forma integro-diferencial da Equação da Transferência 
Radiativa (ETR) em meio participante, muitos métodos aproximados foram desenvolvidos e aplicados por 
diversos autores. No presente trabalho, o método de Galerkin será utilizado para resolver a equação da 
transferência radiativa em meio semitransparente com espalhamento anisotrópico da radiação. A solução do 
problema permite obter grandezas importantes para engenharia, como o divergente do fluxo de calor radiativo, 
o fluxo líquido de calor radiativo, a radiação incidente e a intensidade de radiação em qualquer ponto do meio. 
Os resultados obtidos serão comparados com os de outros métodos de solução. 
 
PALAVRAS-CHAVE: Método de Galerkin, Meio Participante, Radiação Térmica, Radiação Incidente. 
 
 
INTRODUÇÃO 

Quando a radiação térmica interage com um meio participante, o seu estudo se torna mais complexo por dois 
motivos. O primeiro deles é que num meio participante, a absorção, a emissão e o espalhamento da energia 
ocorrem em todas as localizações do meio, e inclusive nas fronteiras. Assim, a solução completa da mudança 
de energia requer o conhecimento da temperatura, da intensidade de radiação e das propriedades físicas em 
todos os pontos do meio. A emissão da radiação deixa de ser um fenômeno puramente superficial para ser um 
fenômeno volumétrico. A segunda dificuldade está na característica espectral da radiação que muda de um 
corpo para outro.  
 
Segundo a teoria de Planck, a radiação atravessa o meio na forma de fótons (o fóton é a unidade básica da 
energia radiativa). A emissão da radiação decorre da liberação de fótons de energia, enquanto que na absorção 
ocorre a captura dos fótons pela partícula. Assim, a energia de uma partícula irá diminuir ou aumentar se esta 
estiver correspondentemente emitindo ou absorvendo fótons. Por outro lado, quando a radiação térmica 
interage com uma partícula, parte do feixe radiante é afastada da direção de propagação por espalhamento, o 
que pode provocar uma perda ou ganho parcial de energia.  
 
Quando um meio participante (que absorve, emite e espalha a radiação térmica) líquido, sólido ou gasoso é 
submetido a altas temperaturas, a radiação é tão ou mais importante que a condução ou convecção no processo 
interno de transferência de calor. Assim, na determinação precisa do campo de temperatura transiente é 
indispensável o tratamento simultâneo dos modos de transferência de calor, pois, segundo Özişik (1973), a 
análise separada pode introduzir erros significativos nos resultados obtidos.  
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A determinação da influência da radiação no processo de transferência de calor requer a solução da Equação 
da Transferência Radiativa, de natureza integro-diferencial, que devido as complexidades físicas e matemáticas 
envolvidas, muitos métodos aproximados foram desenvolvidos, dentre os quais se pode destacar: o método FN 
(Siewert et al, 1979), o método dos harmônicos esféricos (Benassi et al, 1983) e o método das ordenadas 
discretas (Fiveland, 1984). 
 
No presente capítulo, o método de Galerkin, que foi usado por Cengel e Özişik (1984), será empregado para 
resolver a equação da transferência radiativa, possibilitando a determinação de grandezas de interesse prático 
como o divergente do fluxo de calor radiativo, o fluxo líquido de calor radiativo, a radiação incidente e a 
intensidade de radiação em qualquer ponto do meio. Os resultados obtidos são apresentados na forma de 
gráficos e tabelas onde são comparados com outros métodos de solução encontrados na literatura.  
 
 
MODELO MATEMÁTICO DO PROBLEMA FÍSICO 

Para aplicação do Método Galerkin considere inicialmente o problema radiativo em meio plano paralelo 
unidimensional, que absorve, emite e espalha anisotropicamente a energia térmica radiante, e está sujeito a 
fontes de radiação externa como ilustrado na figura 1. Para o estudo do problema será admitido que as 
propriedades radiativas como refletividade e emissividade são consideradas constantes e as superfícies de 
contorno são difusas na emissão e na reflexão. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figura 1: Sistema de coordenadas e geometria do problema. 
 
onde ω é o albedo para espalhamento simples, µ é o cosseno do ângulo formado entre o eixo positivo dos x e a 
direção da intensidade de radiação, n é o índice de refração do meio, ρi (i = 0, 1, 2, 3), εi (i = 1, 2) representam 
respectivamente as refletividades e as emissividades das superfícies de contorno. As funções fi(µ) (i = 1, 2) 
representam a intensidade da fonte de radiação externa que incidem sobre o corpo e I(x, µ) é a intensidade de 
radiação. 
 
No modelo matemático, as equações da transferência radiativa e condições de contornos na forma 
adimensional são expressas da seguinte forma: 
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Com p(µ, µ’) representando a função de fase do espalhamento, Θi (i=1, 2) às temperaturas nas superfícies de 
contornos. O primeiro termo do lado direito da igualdade na equação (1), representa a energia radiativa emitida 
pelo corpo devido sua própria temperatura, onde σ  é a constante de Stefan-Boltzmann. 
 
Na adimensionalização do problema foram utilizados os seguintes grupos e parâmetros adimensionais: 
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As equações (1–3) são resolvidas formalmente em termos das componentes ψ+(τ, µ) e ψ-(τ, µ) para obter: 
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A radiação incidente generalizada na forma adimensional é dada por: 
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Substituindo as equações (5) e (6) em (7), e fazendo-se uso das condições de contorno do problema radiativo, 
resulta: 
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Substituindo as equações (9) e (10) na equação (8) chega-se a: 
 

[ ]

[ ]

[ ]

[ ]







µτ′µ−τ′⋅µ
µ

−+µτ′µτ′⋅µ
µ

+τ′−τ+τ′+τα−τ′ωτ−τβρ−

+τ′τ′−τ+τ′+τατ′τ−τβρ−

+µµ⋅µρ−ατ−τβρ−+τ−τΘεβαα−

+Θετ−τβα−+µµ⋅µρ−⋅τ−τβρ−

+τ−τΘε−+τ′−τα+τ′+τ−τ′ωτ+τβρ

+µ⋅µµρ−−+τ′τ′−τα+τ′+ττ′τ+τβρ

+µµ⋅µρ−⋅τ+τβρ+µµ⋅µρ−ατ+τβρ

+τ+τΘεβα+τ+τΘεβαα




+τ+τΘε+µ⋅µρ−=τ

∫ ∫∫ ∫

∑ ∫

∫

∫

∫

∑ ∫

∫∫

∫∫

∫

τ

τ−

µ
τ−τ′−

τ

τ−

µ
τ′−τ−

=

τ

τ−

∗

τ

τ−

µ
τ−

µ
τ−

=

τ

τ−

∗

µ
τ−τ−τ

τ−

µ
τ−

µ
τ−

µ
τ+τ−

∗

1

0

)(

n

n

1

0

)(

n

M

0m
0m0m1

m

mm0n

*

2

n

020210n

*

2

n

1

0

2

2310n

*

2

n

0n

4

22

*

21

n

4

110n

*

2

n

1

0

2

100n

*

2

n

0n

4

22

n
M

0m
0m20m

m

mm0n

*

1

1

0

)(

n23

n

022020n

*

1

1

0

2

230n

*

1

1

0

2

1020n

*

1

0n

4

22

*

10n

4

11

*

210n

4

11

1

0

)(

10n

0

0

0

0

0

0

0

0

0

0

0

0

00

0

00

0

dd),(Se)(P
1

)1(dd),(Se)(P
1

)(J)(J)1()(Ga)(J2)1(

d)(E)(E)(S)(J2)1(

de)(F)1()(J2)1()(J)1(

)(J)1(de)(F)1()(J2)1(

)(J)1()(J)(J)1()(Ga)(J2

de)(P)(F)1()1(d)(E)(E)(S)(J2

de)(F)1()(J2de)(F)1()(J2

)(J)(J)(Jde)(F)1(
2

1
)(G

 (11) 

 
onde foi definido que: 
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A equação (11) pode ser reescrita da seguinte forma: 
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onde ℑ  caracteriza todas as operações matemáticas que aparecem na equação (4.34) e os termos Kmn(τ, τ’) e Yn(τ) são 
definidos respectivamente por: 
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com o valor de r definido por: 
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O problema descrito pelas equações (1-3) fica reduzido à solução da equação integral (13) para a função )(G n τ∗ , que é 

representada em termos de polinômios de Legendre na variável óptica, τ, conforme Cengel (1984), ou seja: 
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Onde cnk são os coeficientes de expansão a serem determinados. Uma vez conhecidos esses coeficientes, as intensidades de 
radiação, a radiação incidente, fluxo de calor radiativo e o divergente do fluxo de calor radiativo são determinados em 
qualquer ponto do meio a partir de suas definições formais. 
 

O método de Galerkin aplicado à equação (14) com )(G n τ∗  dada pela equação (18) vai resultar: 
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Nas equações (20) e (21) aparecem os seguintes termos: 
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Fazendo-se uso dos coeficientes de expansão cnk determinados pela expressão (19), as componentes da intensidade de 

radiação ψ+(τ, µ) e ψ-(τ, µ), as componentes do fluxo de calor radiativo )(Q r τ+  e )(Q r τ− e a radiação incidente são 

determinadas respectivamente por: 
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Onde foram definidos que: 
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Os coeficientes an estão relacionados à função de fase do espalhamento da radiação. A determinação completa da função de 
fase, de acordo com Özişik  (1973) é bastante laboriosa, pois requer que sejam feitos cálculos para um grande número de 
ângulos de espalhamento. Por isso, Chu e Churchill (1955) expressaram a função de fase em termos de polinômios de 
Legendre da seguinte forma: 
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onde Pj(µ0) é o polinômio de Legendre de ordem j e argumento µ0, e aj são os coeficientes de expansão determinados a partir 
das equações de Mie (para o caso de partículas em forma de esfera), sendo função somente do diâmetro e do índice de 
refração das partículas. Para efeito de comprovação da eficácia do método empregado neste trabalho, as simulações serão 
feitas usando as leis de espalhamento dadas na tabela 1 (Lee e Buckius, 1982). 
 

Tabela 1: Coeficiente para expansão da Função de Fase. 

Função de Fase 
aj 

F1 F2 F3 B1 B2 B3 

a0 1.0 1.0 1.0 1.0 1.0 1.0 
a1 1.0 1.5 1.98398 -1.0 1.0 -0.56524 
a2  0.5 1.50823  1.0 0.29783 
a3   0.70075  -0.75 0.08571 
a4   0.23489   0.01003 
a5   0.05133   0.00063 
a6   0.00760    
a7   0.00048    

 
 
RESULTADOS E DISCUSSÕES 

As equações algébricas resultantes foram resolvidas por meio de código computacional escrito em linguagem 
Fortran, utilizando o software FORTRAN POWERSTATION 4.0. Como aplicação considerou-se um corpo 
plano unidimensional com contornos transparentes, sujeito a uma fonte de radiação externa isotrópica de 
intensidade unitária aplicada na superfície de contorno τ=-τ0, isto é, F1(µ)=1. A radiação emitida pelo corpo 
devido a sua própria temperatura é desprezível quando comparada com F1(µ), e a fonte de radiação externa, 
F2(µ) é nula. 
 
Na figura (2) é apresentado o efeito que a espessura óptica exerce na refletância de um corpo puramente 
difusor (ω=1.0) para dois tipos de função de fase (B2 e F2). Pode-se perceber além da forte concordância dos 
resultados obtidos que a refletância aumenta para valores crescentes de τ0. 
 
A Figura (3) mostra a influência que a função de fase do espalhamento exerce no fluxo líquido de calor 
radiativo para um corpo com superfícies de contorno negras, sujeito a uma fonte externa de radiação difusa e 
intensidade unitária, aplicada na posição τ=-τ0. Na simulação foram considerados diferentes valores para o 
albedo e espessura óptica como indicados nas respectivas figuras. Pode-se perceber que os resultados obtidos 
apresentam forte concordância com a solução exata apresentada por Lee e Buckius (1982). 
 
A Tabela (2) mostra os resultados obtidos para radiação incidente na superfície de contorno (τ=τ0.) para um 
corpo conservativo (ω=1.0) cinzento, que espalha radiação isotropicamente. No estudo é verificada a 
influência da espessura óptica do corpo sobre essa grandeza. As propriedades radiativas e as temperaturas de 
cada parede estão especificadas nas próprias tabelas. Os resultados obtidos no presente trabalho são 
comparados com a solução exata de Heaslet e Warming (1965), e com os resultados de Fiveland (1987) que 
resolveu o problema pelo método das diferenças finitas associado ao método das ordenadas discretas e os 
obtidos por Oliveira (2004) que utilizou o método das ordenadas discretas. Uma análise dos resultados mostra 
que, com poucos termos de expansão, o método de Galerkin mostra forte concordância com os outros métodos 
apresentados. 
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Figura 2: Refletância versus espessura óptica do corpo 
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Figura 3: Efeito da função de fase no fluxo de calor radiativo adimensional. 
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ωωωω = 1.0   θθθθ1 = 1.0   θθθθ2 = 0.0   ρρρρ1
d = 0.2 

Radiação incidente G(ττττ0) 

Fiveland Oliveira εεεε1 εεεε2 ττττ0 

G6 S6 S12 G300 

Pres. Trabalho Sol. Exata 

0.1 1.4440 1.4110 1.3946 1.3963 1.3963 1.3965 

1.0 0.8660 0.8558 0.8500 0.8499 0.8499 0.8499 1.0 

3.0 0.5031 0.4912 0.4860 0.4861 0.4861 0.4861 

0.1 2.5640 2.5172 2.5068 2.5080 2.5080 2.5080 

1.0 1.9140 1.8832 1.8804 1.8801 1.8803 1.8801 0.5 

3.0 1.2880 1.2668 1.2558 1.2558 1.2558 1.2558 

0.1 3.7420 3.6628 3.6618 3.6622 3.6621 3.6622 

1.0 3.5212 3.4120 3.4140 3.4138 3.4140 3.4138 

0.8 

0.1 

3.0 3.1520 3.0000 3.0030 3.0029 3.0030 3.0029 
 
 
CONCLUSÕES 

Como pode ser observado através dos resultados obtidos, o método de Galerkin, empregado para resolver a 
Equação da Transferência Radiativa, permite determinar de forma rápida, sistemática e precisa, resultados de 
grandezas físicas de interesse prático da engenharia, como distribuição angular da intensidade de radiação, 
fluxo líquido de calor radiativo e a radiação incidente em qualquer ponto do meio sem que seja preciso alterar 
a formulação original do problema. Por isso, pode-se concluir que o método de Galerkin é uma alternativa 
computacional para resolver a ETR em problemas acoplados condução-radiação. 
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